Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
J Am Chem Soc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602511

RESUMO

Meroterpenoid clavilactones feature a unique benzo-fused ten-membered carbocyclic ring unit with an α,ß-epoxy-γ-lactone moiety, forming an intriguing 10/5/3 tricyclic nested skeleton. These compounds are good inhibitors of the tyrosine kinase, attracting a lot of chemical synthesis studies. However, the natural enzymes involved in the formation of the 10/5/3 tricyclic nested skeleton remain unexplored. Here, we identified a gene cluster responsible for the biosynthesis of clavilactone A in the basidiomycetous fungus Clitocybe clavipes. We showed that a key cytochrome P450 monooxygenase ClaR catalyzes the diradical coupling reaction between the intramolecular hydroquinone and allyl moieties to form the benzo-fused ten-membered carbocyclic ring unit, followed by the P450 ClaT that exquisitely and stereoselectively assembles the α,ß-epoxy-γ-lactone moiety in clavilactone biosynthesis. ClaR unprecedentedly acts as a macrocyclase to catalyze the oxidative cyclization of the isopentenyl to the nonterpenoid moieties to form the benzo-fused macrocycle, and a multifunctional P450 ClaT catalyzes a ten-electron oxidation to accomplish the biosynthesis of the 10/5/3 tricyclic nested skeleton in clavilactones. Our findings establish the foundation for the efficient production of clavilactones using synthetic biology approaches and provide the mechanistic insights into the macrocycle formation in the biosynthesis of fungal meroterpenoids.

2.
Oncogene ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649438

RESUMO

Transcription factors (TFs) engage in various cellular essential processes including differentiation, growth and migration. However, the master TF involved in distant metastasis of nasopharyngeal carcinoma (NPC) remains largely unclear. Here we show that KLF5 regulates actin remodeling to enhance NPC metastasis. We analyzed the msVIPER algorithm-generated transcriptional regulatory networks and identified KLF5 as a master TF of metastatic NPC linked to poor clinical outcomes. KLF5 regulates actin remodeling and lamellipodia formation to promote the metastasis of NPC cells in vitro and in vivo. Mechanistically, KLF5 preferentially occupies distal enhancer regions of ACTN4 to activate its transcription, whereby decoding the informative DNA sequences. ACTN4, extensively localized within actin cytoskeleton, facilitates dense and branched actin networks and lamellipodia formation at the cell leading edge, empowering cells to migrate faster. Collectively, our findings reveal that KLF5 controls robust transcription program of ACTN4 to modulate actin remodeling and augment cell motility which enhances NPC metastasis, and provide new potential biomarkers and therapeutic interventions for NPC.

3.
Nat Commun ; 15(1): 2654, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531972

RESUMO

The Myoviridae cyanophage A-1(L) specifically infects the model cyanobacteria Anabaena sp. PCC 7120. Following our recent report on the capsid structure of A-1(L), here we present the high-resolution cryo-EM structure of its intact tail machine including the neck, tail and attached fibers. Besides the dodecameric portal, the neck contains a canonical hexamer connected to a unique pentadecamer that anchors five extended bead-chain-like neck fibers. The 1045-Å-long contractile tail is composed of a helical bundle of tape measure proteins surrounded by a layer of tube proteins and a layer of sheath proteins, ended with a five-component baseplate. The six long and six short tail fibers are folded back pairwise, each with one end anchoring to the baseplate and the distal end pointing to the capsid. Structural analysis combined with biochemical assays further enable us to identify the dual hydrolytic activities of the baseplate hub, in addition to two host receptor binding domains in the tail fibers. Moreover, the structure of the intact A-1(L) also helps us to reannotate its genome. These findings will facilitate the application of A-1(L) as a chassis cyanophage in synthetic biology.


Assuntos
Anabaena , Myoviridae , Proteínas do Capsídeo/química , Capsídeo
4.
Phytomedicine ; 128: 155328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522316

RESUMO

BACKGROUND: Glioblastoma (GBM) represents as the most formidable intracranial malignancy. The systematic exploration of natural compounds for their potential applications in GBM therapy has emerged as a pivotal and fruitful avenue of research. PURPOSE: In the present study, a panel of 96 diterpenoids was systematically evaluated as a repository of potential antitumour agents. The primary objective was to discern their potency in overcoming resistance to temozolomide (TMZ). Through an extensive screening process, honatisine, a heptacyclic diterpenoid alkaloid, emerged as the most robust candidate. Notably, honatisine exhibited remarkable efficacy in patient-derived primary and recurrent GBM strains. Subsequently, we subjected this compound to comprehensive scrutiny, encompassing GBM cultured spheres, GBM organoids (GBOs), TMZ-resistant GBM cell lines, and orthotopic xenograft mouse models of GBM cells. RESULTS: Our investigative efforts delved into the mechanistic underpinnings of honatisine's impact. It was discerned that honatisine prompted mitonuclear protein imbalance and elicited the mitochondrial unfolded protein response (UPRmt). This effect was mediated through the selective depletion of mitochondrial DNA (mtDNA)-encoded subunits, with a particular emphasis on the diminution of mitochondrial transcription factor A (TFAM). The ultimate outcome was the instigation of deleterious mitochondrial dysfunction, culminating in apoptosis. Molecular docking and surface plasmon resonance (SPR) experiments validated honatisine's binding affinity to TFAM within its HMG-box B domain. This binding may promote phosphorylation of TFAM and obstruct the interaction of TFAM bound to heavy strand promoter 1 (HSP1), thereby enhancing Lon-mediated TFAM degradation. Finally, in vivo experiments confirmed honatisine's antiglioma properties. Our comprehensive toxicological assessments underscored its mild toxicity profile, emphasizing the necessity for a thorough evaluation of honatisine as a novel antiglioma agent. CONCLUSION: In summary, our data provide new insights into the therapeutic mechanisms underlying honatisine's selective inducetion of apoptosis and its ability to overcome chemotherapy resistance in GBM. These actions are mediated through the disruption of mitochondrial proteostasis and function, achieved by the inhibition of TFAM-mediated mtDNA transcription. This study highlights honatisine's potential as a promising agent for glioblastoma therapy, underscoring the need for further exploration and investigation.


Assuntos
DNA Mitocondrial , Diterpenos , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Temozolomida , Fatores de Transcrição , Glioblastoma/tratamento farmacológico , Humanos , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Temozolomida/farmacologia , Linhagem Celular Tumoral , Diterpenos/farmacologia , Fatores de Transcrição/metabolismo , Camundongos , DNA Mitocondrial/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Encefálicas/tratamento farmacológico , Transcrição Gênica/efeitos dos fármacos , Camundongos Nus
5.
J Agric Food Chem ; 72(8): 4089-4099, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38353561

RESUMO

Ten new cadinane-type sesquiterpenoids, named hibisceusins I-R (1-10), along with 14 known sesquiterpenoids (11-24), were acquired from the tainted stems of Hibiscus tiliaceus. Their structures were identified via spectroscopic analysis, one-dimensional (1D) and two-dimensional (2D) NMR, and computer-assisted structure elucidation techniques, including infrared (IR) and mass spectrometry (MS) data. Additionally, subsequent DP4/DP4+ probability methods were used to resolve 3's relative configurations by comparing their experimental values to the predicted NMR data. The absolute configurations of compounds 1-4 were measured through electronic circular dichroism (ECD) spectra. The ability of all isolates to inhibit the growth of five phytopathogenic fungi (Rhizopus stolonifer, Verticillium dahliae Kleb., Thanatephorus cucumeris, Fusarium oxysporum Schltdl., and F. oxysporum HK-27) was evaluated. Aldehydated sesquiterpenoids (1, 6-9, 11, 12, and 22) and a known sesquiterpenoid quinine (18) exhibited significant inhibitory activities against V. dahliae, T. cucumeris, F. oxysporum, and F. oxysporum HK-27 with minimum inhibitory concentration (MIC) values of 2.5-50 µg/mL, but all isolates remained inactive against R. stolonifer. Moreover, the effects of the isolates on the mycelial morphology were watched through scanning electron microscopy. This study revealed that aldehydated cadinane-type sesquiterpenoids could be used as novel antifungal molecules to develop agrochemical fungicides in plant protection.


Assuntos
Fungicidas Industriais , Hibiscus , Sesquiterpenos Policíclicos , Compostos de Amônio Quaternário , Sesquiterpenos , Fungicidas Industriais/farmacologia , Hibiscus/química , Estrutura Molecular , Sesquiterpenos/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-38402460

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is a major cause of primary glomerulonephritis characterized by mesangial deposits of galactose-deficient IgA1 (Gd-IgA1). Toll-like receptors (TLRs), particularly TLR4 are involved in the pathogenesis of IgAN. The role of gut microbiota on IgAN patients was recently investigated. However, whether gut microbial modifications of Gd-IgA1 through TLR4 play a role in IgAN remains unclear. METHODS: We recruited subjects into four groups, including 48 patients with untreated IgAN, 22 treated IgAN patients (IgANIT), 22 primary membranous nephropathy (MN), and 31 healthy controls (HCs). Fecal samples were collected to analyze changes in gut microbiome. Gd-IgA1 levels, expression of TLR4, B-cell stimulators, and intestinal barrier function were evaluated in all subjects. C57BL/6 mice were treated with a broad-spectrum antibiotic cocktail to deplete the gut microbiota and then gavaged with fecal microbiota transplanted fromclinical subjects of every group. Gd-IgA1 and TLR4 pathway were detected in peripheral blood mononuclear cells (PBMCs) from IgAN and HCs co-incubated with Lipopolysaccharide (LPS) and TLR4 inhibitor. RESULTS: Compared with other three groups, different compositions and decreased diversity demonstrated gut dysbiosis in un-treated IgAN, especially the enrichment of Escherichia -Shigella. Elevated Gd-IgA1 levels were found in un-treated IgAN patients and correlated with gut dysbiosis, TLR4, B-cell stimulators, indexes of intestinal barrier damage, and proinflammatory cytokines. In vivo, mice colonized with gut microbiota from IgAN and IgANIT patients, copied the IgAN phenotype with the activation of TLR4/MyD88/NF-κB pathway, B-cell stimulators in the intestine, and complied with enhanced proinflammatory cytokines. In vitro, LPS activated TLR4/MyD88/NF-κB pathway, B-cell stimulators and proinflammatory cytokines in the PBMCs from IgAN patients, which resulted in overproduction of Gd-IgA1 and inhibited by TLR4 inhibitor. CONCLUSIONS: Our results illustrated that gut-kidney axis was involved in the pathogenesis of IgAN. Gut dysbiosis could stimulate the overproduction of Gd-IgA1 by TLR4 signaling pathway production and B-cell stimulators.

7.
Nat Prod Res ; : 1-8, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389428

RESUMO

Quality markers (Q-markers) are of great significance for quality evaluation of herbal medicines. Zhenyuan Capsule (ZYC) is a kind of Chinese patent medicine used to treat cardiovascular diseases. However, reliable and effective Q-markers for ZYC are still lacking. Herein, a UHPLC-Q/Orbitrap-MS/MS was performed to characterise the preliminary chemical profile of ZYC. A total of 86 components were characterised among which 20 constituents were unambiguously identified by reference compounds. Based on network pharmacology, seven major ginsenosides with great importance in the network were identified as Q-markers among which ginsenoside Re with the highest betweenness was screened to inhibit the development of coronary heart disease (CHD) by binding with vascular endothelial growth factor A (VEGFA). Docking and molecular dynamics simulation studies suggested that ginsenoside Re stably bound to VEGFA. Quantitative determination and chemical fingerprinting analysis were performed using HPLC-DAD. The results showed that ginsenosides screened might function as potential Q-markers for ZYC.

8.
Infect Drug Resist ; 17: 673-682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405053

RESUMO

Purpose: This study aimed to evaluate the efficacy of nanopore sequencing for diagnosing pulmonary tuberculosis (PTB) using smear-negative clinical specimens. Methods: We conducted a retrospective study based on a review of patient medical records to assess the accuracy of nanopore sequencing as a diagnostic tool for smear-negative PTB. Compared with clinical diagnosis, we determined the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC) of nanopore sequencing. Results: A total of 647 patients were evaluated. Nanopore sequencing demonstrated an overall sensitivity of 91.7%, specificity of 85.3%, PPV of 95.1%, NPV of 76.4%, and AUC of 0.88. Notably, the overall diagnostic accuracy of nanopore sequencing was significantly higher than that of Mycobacterium tuberculosis (MTB) culture technique. Conclusion: Nanopore sequencing exhibited satisfactory overall diagnostic accuracy for smear-negative PTB, regardless of MTB culture status. Therefore, if conditions permit, nanopore sequencing is recommended as a diagnostic method for smear-negative PTB.

9.
Altern Ther Health Med ; 30(1): 419-425, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37820669

RESUMO

Context: Studies have reported that the incidence and severity of IgA nephropathy (IgAN) are closely related to the imbalance of the intestinal flora. Imbalance of the intestinal flora may cause abnormalities, such as intestinal mucosal immunity or mesenteric B1 lymphocyte subsets. These can lead to an increase in immunoglobulin A (IgA) production and IgA structural changing, which can eventually cause IgA1 deposition in the glomerular mesangial area and nephritis. Objective: The study intended to explore whether the LPS/TLR4 pathway regulates mesenteric B cells, secreting Gd-IgA1 to induce IgA nephropathy. Design: The research team designed an animal study. Setting: The study took place at Department of Nephrology, Minhang Hospital, Fudan University. Animals: The animals were 60 specific pathogen free (SPF) C57BL/6 (B6, H-2b) male mice from that were 6-8 weeks old and weighed 20-25 grams. Intervention: The research team established a mouse model of IgA nephropathy. The team created five groups of mice: (1) the NC group, a normal negative control group without induced nephropathy and with no treatments; (2) the IgA nephropathy (IgAN) group, a positive control group with induced nephropathy and with no treatments; (3) the IgAN+anti-TLR4 group, an intervention group, with induced nephropathy and with a TLR4-antibody (anti-TLR4) treatment; (4) the IgAN+GEC group, an intervention group, with induced nephropathy and with treatment with glutamine enteric-coated capsules (GEC); and (5) the IgAN+anti-TLR4+GEC group, an intervention group, with induced nephropathy and with treatment with anti-TLR4 and GEC. Outcome Measures: The research team collected the blood and urine of all the mice and used an enzyme-linked immunoassay (ELISA) to analyze the levels of blood creatinine, urine protein, and urea nitrogen (BUN). The team also used the ELISA to analyze signal molecules for serum inflammation: interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP-1), cyclooxygenase-2 (COX2), and galactose-deficient IgA1(Gd-IgA1). The team analyzed the distribution and content of IgA+B220+B lymphocytes in the intestinal tissues of all the mice, using tissue immunofluorescence tracking technology, and used hematoxylin-eosin (HE) staining to analyze the pathological damage in the kidney tissue. For analysis of glomerular IgA deposition, the team used a tissue immunofluorescence technique, and for detection of protein expression-toll-like receptor 4 (TLR4), B-cell activating factor (BAFF), and a proliferation-inducing ligand (APRIL)-in mesenteric lymphoid tissues, the team used western blot analysis. Results: For the five groups of mice, the amount or degree of the physiological indicators and inflammatory factors that ELISA detected, the B lymphocytes and IgA sedimentation that immunofluorescence tracing measured, the kidney pathological that HE staining detected, and the expression of immune-related proteins that western blotting measured, all showed a common trend: IgAN group> IgAN+ glomerular endothelial cells (GEC) group> IgAN+anti-TLR4 group> IgAN+anti-TLR4+GEC group> NC group. Conclusions: The TLR4 antibody and GEC for the treatment of the intestinal tract can regulate and repair intestinal function, so that IgAN can also be relieved at the same time. The results supported the hypothesis that a relationship exists between IgAN and the LPS/TLR4 pathway that regulates mesenteric B cells to secrete low-glycosylated poly-IgA1, which provides a new potential therapeutic plan for IgA nephritis.


Assuntos
Glomerulonefrite por IGA , Nefrite , Humanos , Masculino , Camundongos , Animais , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/patologia , Receptor 4 Toll-Like , Lipopolissacarídeos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos Endogâmicos C57BL , Imunoglobulina A/metabolismo
10.
Fitoterapia ; 172: 105787, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38122855

RESUMO

Eleutherine bulbosa (Mill.) Urb. is a medicinal and edible plant with various benefits for humans and animals. In this work, four new phenolic constituents (1-4), along with six known phenolic compounds (5-10) were obtained from the red bulbs of E. bulbosa. Their structures with absolute configurations were characterized by extensive spectroscopic analysis, combined with HR-ESI-MS and quantum mechanical electronic circular dichroism (ECD). Compounds 1 and 2 are novel homologous and heterodimers, respectively, featuring an unusual spiro ring system. All isolated phenolic constituents were tested for their antibacterial effects. The results revealed four phenolic compounds 1-3 and 7 showed moderate antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Escherichia coli with minimum inhibitory concentration (MIC) values ranging from 15.6 to 250.0 µg/mL.


Assuntos
Antibacterianos , Iridaceae , Animais , Humanos , Estrutura Molecular , Staphylococcus aureus , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Fenóis/farmacologia , Fenóis/química , Escherichia coli
11.
J Ethnopharmacol ; 319(Pt 3): 117326, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37879504

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylodis Rhizoma is extensively employed in Traditional Chinese Medicine for the treatment of skin and gastrointestinal ailments. Its active components have been proven to demonstrate numerous beneficial properties, including antibacterial, antiviral, anti-inflammatory, anti-tumor, and anti-ulcer activities. Furthermore, the volatile oil from Atractylodis Rhizoma (VOAR) has been reported to effectively inhibit and eradicate pathogens such as Staphylococcus aureus, Escherichia coli and Candida albicans. Of particular concern is Staphylococcus pseudintermedius, the predominant pathogen responsible for canine pyoderma, whose increasing antimicrobial resistance poses a serious public health threat. VOAR merits further investigation regarding its antibacterial potential against Staphylococcus pseudintermedius. AIM OF THE STUDY: The study aims to verify the in vitro antibacterial activity of VOAR against Staphylococcus pseudintermedius. And a superficial skin infection model in mice was established to assess the in vivo therapeutic effect of VOAR. MATERIALS AND METHODS: Thirty strains of S. pseudintermedius were isolated from dogs with pyoderma, and the drug resistance was analyzed by disc diffusion method. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of VOAR were determined through the broth dilution method. The growth curve of bacteria in a culture medium containing VOAR was monitored using a UV spectrophotometer. Scanning electron microscopy was employed to observe the effects of VOAR on the microstructure of S. pseudintermedius. The impact of VOAR on the antibiotic resistance of S. pseudintermedius was assessed using the disc diffusion method. Twenty mice were randomly divided into four groups: the control group, the physiological saline group, the VOAR group, and the amikacin group. With the exception of the control group, the skin barrier of mice was disrupted by tap stripping, and the mice were subsequently inoculated with S. pseudintermedius to establish a superficial skin infection model. The modeled mice were treated with normal saline, VOAR, and amikacin for 5 days. Following the treatment period, the therapeutic effect of each group was evaluated based on the measures of body weight, skin symptoms, tissue bacterial load, tissue IL-6 content, and histopathological changes. RESULTS: The MIC and MBC of VOAR against 30 clinical isolates of S. pseudintermedius were found to be 0.005425% and 0.016875%, respectively. VOAR could exhibit the ability to delay the entry of bacteria into the logarithmic growth phase, disrupt the bacterial structure, and enhance the antibacterial zone in conjunction with antibiotic drugs. In the superficial skin infection model mice, VOAR significantly reduced the scores for skin redness (P < 0.0001), scab formation (P < 0.0001), and wrinkles (P < 0.0001). Moreover, VOAR markedly reduced the bacterial load (P < 0.001) and IL-6 content (P < 0.0001) in the skin tissues of mice. Histopathological observations revealed that the full-layer skin structure in the VOAR group was more complete, with clearer skin layers, and showed significant improvement in inflammatory cell infiltration and fibroblast proliferation compared to other groups. CONCLUSION: The results demonstrate that VOAR effectively inhibits and eradicates Staphylococcus pseudintermedius in vitro while also enhancing the pathogen's sensitivity to antibiotics. Moreover, VOAR exhibits a pronounced therapeutic effect in the superficial skin infection model mice.


Assuntos
Atractylodes , Staphylococcus aureus Resistente à Meticilina , Pioderma , Cães , Animais , Camundongos , Amicacina , Interleucina-6 , Pioderma/tratamento farmacológico , Pioderma/veterinária , Antibacterianos/farmacologia
12.
Kidney Dis (Basel) ; 9(6): 498-506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38089437

RESUMO

Background: This prespecified subgroup analysis of the FIDELIO-DKD trial aimed to evaluate the efficacy and safety of finerenone in patients with chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM) in China. Methods: 372 participants were recruited from 67 centers in China and randomized 1:1 to oral finerenone or placebo with standard therapy for T2DM. The primary composite outcome included kidney failure, sustained decrease of estimated glomerular filtration rate ≥40% from baseline over at least 4 weeks, or renal death. The key secondary composite outcome included death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Results: After a median follow-up of 30 months, the finerenone group showed a relative risk reduction (RRR) of 41% (hazard ratio [HR] = 0.59, 95% confidence interval [CI], 0.39-0.88; p = 0.009) for the primary composite outcome compared with placebo, consistent across its components with treatment benefits with finerenone. Based on an absolute between-group difference of 12.2% after 30 months, the number of patients who needed to be treated with finerenone to prevent one primary outcome event was eight (95% CI: 4-84). For the key secondary composite outcome, the finerenone group showed a RRR of 25% (HR = 0.75, 95% CI, 0.38-1.48; p = 0.408). Adverse events were similar between the two groups. The effects of finerenone on blood pressure were modest. No gynecomastia events were reported in the study. Hyperkalemia leading to discontinuation occurred in eight (4.3%) and two (1.1%) participants in the finerenone and control groups, respectively. The incidence of acute kidney injury was comparable between the two groups (1.6% vs. 1.6%). Conclusions: Finerenone resulted in lower risks of CKD progression than placebo and a balanced safety profile in Chinese patients with CKD and T2DM.

13.
Food Chem X ; 20: 100925, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144717

RESUMO

Noni fruits have gained considerable popularity as dietary supplements. However, the major constituents, the laxative activity, and the toxicity of Noni fruit remains still unknown. The purpose of the present study was, therefore, to analyze the constituents of methanol extract of Noni fruit by UPLC-MS, and further evaluate laxative activity and safety aspects of this Noni fruit-derived products in mice. UPLC-MS analysis identified eleven major constituents from this Noni fruit extract. Administration of this extract obviously shortened the time of first fecal excrement, significantly increased the total number and the weight of stools, and remarkably restored the intestinal transit to normal level in the constipated mice, with low toxicity to liver and kidney, and meanwhile, the abundance, composition, and function of gut microbiota remained homeostasis. These results revealed the laxative activity of the methanol extract of Noni fruit with low toxicity and no influence on gut microbiota.

14.
J Agric Food Chem ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921650

RESUMO

The bioproduction of xylitol from hemicellulose hydrolysate has good potential for industrial development. However, xylitol productivity has always been limited due to corncob hydrolysate toxicity and glucose catabolic repression. To address these challenges, this work selected the S83 and S128 amino acid residues of the cyclic AMP receptor protein (CRP) as the modification target. By introducing multisite mutation in CRP, this approach successfully enhanced xylose catabolism and improved the strain's tolerance to corncob hydrolysate. The resulting mutant strain, designated as CPH (CRP S83H-S128P), underwent fermentation in a 20 L bioreactor with semicontinuous feeding of corncob hydrolysate. Remarkably, xylitol yield and xylitol productivity for 41 h fermentation were 175 and 4.32 g/L/h, respectively. Therefore, multisite CRP mutation was demonstrated as an efficient global regulatory strategy to effectively improve xylitol productivity from lime-pretreated corncob hydrolysates.

15.
Heliyon ; 9(9): e20328, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809388

RESUMO

Object: This study aims to investigate the changes in gut microbiota and metabolism of patients with chronic kidney disease (CKD) stage 1-2, as well as the potential impact of hyperuricemia (HUA) on these factors in CKD stage 1-2 patients. Methods: In this study, fecal samples were collected from CKD stage 1-2 without HUA patients (CKD-N group), CKD stage 1-2 with HUA patients (CKD-H group), and healthy people controls (HCs group). The samples were then subjected to the microbiome (16S rRNA gene sequencing) and metabolome (liquid chromatography-tandem mass spectrometry) analyses. The multi-omics datasets were analyzed individually and integrated for combined analysis using various bioinformatics approaches. Results: Gut microbial dysbiosis was found in CKD-N and CKD-H patients. At the phylum level, compared to HCs group, Bacteroidetes decreased but Proteobacteria increased in CKD-H group significantly. Fusobacteria in CKD-N group was significantly lower than HCs group. At genus level, [Eubacterium]_ventriosum_group, Fusobacterium, Agathobacter, Parabacteroides, and Roseburia significantly changed in CKD groups. [Ruminococcus]_gnavus_group was significantly lower in CKD-H group than CKD-N group. Moreover, the fecal metabolome of CKD-N and CKD-H altered significantly. d-glutamine and d-glutamate metabolism, arginine and proline metabolism, histidine metabolism, and lysine biosynthesis were down-regulated in the CKD-N group. Phenylalanine metabolism, arginine and proline metabolism, purine metabolism, and beta-alanine metabolism were up-regulated in the CKD-H group. There was a significant difference between the two CKD groups in phenylalanine metabolism. The abundance change of [Ruminococcus]_gnavus_group, [Eubacterium]_ventriosum_group, UCG-002, Alistipes, and Bifidobacterium had a close correlation with differential metabolites. Conclusion: The gut microbiota and metabolic status undergo significant changes in CKD patients compared to healthy people. Additionally, HUA has been found to impact the gut microbiota of CKD patients, as well as their metabolism. The close association between gut microbiota and metabolites suggests that the former plays a crucial role in metabolism.

16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(10): 865-871, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37882709

RESUMO

Objective To investigate the effect of intestinal mucosal Toll-like receptor 4/nuclear factor κB (TLR4/NF-κB) signaling pathway on renal damage in pseudo-sterile IgA nephropathy (IgAN) mice. Methods C57BL/6 mice were randomly divided into experimental group (pseudosterile mouse model group), control group (IgAN mouse model group), pseudosterile mouse blank group, and normal mouse blank group. Pseudosterile mice were established by intragastric administration of quadruple antibiotics once a day for 14 days. The pseudosterile IgAN mouse model was set up by combination of oral bovine serum albumin (BSA) administration and staphylococcal enterotoxin B (SEB) injection. The pathological changes of renal tissue were observed by immunofluorescence staining and PAS staining, and the intestinal mucosa barrier damage indicators lipopolysaccharide(LPS), soluble intercellular adhesion molecule 1(sICAM-1) and D-lactate(D-LAC) were analyzed by ELISA. Biochemical analysis was used to test 24 hour urine protein, serum creatinine and blood urea nitrogen. The mRNA and protein levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear factor κB (NF-κB) were detected by reverse transcription PCR and Western blot analysis. Results The kidney damage of pseudosterile IgAN mice was more severe than that of IgAN mice, and the expressions of intestinal mucosal barrier damage markers (LPS, sICAM-1 and D-LAC) were significantly increased in pseudosterile IgAN mice. In addition, the expressions of TLR4, MyD88, and NF-κB level were all up-regulated in the intestinal tissues of IgAN pseudosterile mice. Conclusion Intestinal flora disturbance leads to intestinal mucosal barrier damage and induces activation of TLR4 signaling pathway to mediate renal injury in IgAN.


Assuntos
Glomerulonefrite por IGA , Infertilidade , Animais , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Receptor 4 Toll-Like/genética , Lipopolissacarídeos , Fator 88 de Diferenciação Mieloide/genética , Rim , Mucosa Intestinal , Modelos Animais de Doenças
17.
ACS Appl Bio Mater ; 6(10): 3984-4001, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37707491

RESUMO

In the field of carbon nanomaterials, carbon dots (CDs) have become a preferable choice in biomedical applications. Based on the concept of green chemistry, CDs derived from traditional Chinese medicines (TCMs) have attracted extensive attention, including TCM charcoal drugs, TCM extracts, and TCM small molecules. The design and preparation of CDs from TCMs (TCMs-CDs) can improve the inherent characteristics of TCMs, such as solubility, particle size distribution, and so on. Compared with other precursor materials, TCMs-CDs have outstanding intrinsic bioactivities and potential pharmacological effects. However, the research of TCMs-CDs in biomedicine is not comprehensive, and their mechanisms have not been understood deeply either. In this review, we will provide concise insights into the recent development of TCMs-CDs, with a major focus on their preparation, formation, precursors, and bioactivities. Then we will discuss the perfect transformation from TCMs to TCMs-CDs. Finally, we discuss the opportunities and challenges for the application of TCMs-CDs in clinical treatment.

18.
Mater Today Bio ; 22: 100755, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37593217

RESUMO

Postoperative peritoneal adhesion (PPA) is frequent and extremely dangerous complication after surgery. Different tactics have been developed to reduce it. However, creating a postoperative adhesion method that is multifunctional, biodegradable, biocompatible, low-toxic but highly effective, and therapeutically applicable is still a challenge. Herein, we have prepared a degradable spray glycyrrhetinic acid hydrogel (GAG) based on natural glycyrrhetinic acid (GA) by straightforward heating and cooling without the use of any additional chemical cross-linking agents to prevent postoperative adhesion. The resultant hydrogel was demonstrated to possess various superior anti-inflammatory activity, and multiple functions, such as excellent degradability and biocompatibility. Specifically, spraying characteristic and excellent antibacterial activities essentially eliminated secondary infections during the administration of drugs in surgical wounds. In the rat models, the carrier-free spray GAG could not only slow-release GA to inhibit inflammatory response, but also serve as physical anti-adhesion barrier to reduce collagen deposition and fibrosis. The sprayed GAG would shed a new light on the prevention of postoperative adhesion and broaden the application of the hydrogels based on natural products in biomedical fields.

19.
Adv Mater ; 35(44): e2304967, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608768

RESUMO

Inflammatory bowel disease (IBD) affects millions of individuals worldwide annually. Enteric reactive oxygen species (ROS) play critical roles in the physiology and pathology of IBD. Nanozymes hold great promise for the treatment of IBD because of their exceptional ability to regulate redox homeostasis during ROS-related inflammation. However, the rapid development of orally administered, acid-tolerant, antioxidant nanozymes for IBD therapy is challenging. Here, a nine-tier high-throughput screening strategy is established to address the multifaceted IBD treatment demands, including intrinsic stability, radioactivity, solubility, gut microbiome toxicity, biomimetic elements, intermediate frontier molecular orbitals, reaction energy barriers, negative charges, and acid tolerance. Ni3 S4 is selected as the best matching material from 146 323 candidates, which exhibits superoxide dismutase-catalase bienzyme-like activity and is 3.13- and 1.80-fold more active than natural enzymes. As demonstrated in a mouse model, Ni3 S4 is stable in the gastrointestinal tract without toxicity and specifically targets the diseased colon to alleviate oxidative stress. RNA and 16S rRNA sequencing analyses show that Ni3 S4 effectively inhibits the cellular pathways of pro-inflammatory factors and restores the gut microbiota. This study not develops a highly efficient orally administered cascade nanozyme for IBD therapy and offers a next-generation paradigm for the rational design of nanomedicine through data-driven approaches.


Assuntos
Doenças Inflamatórias Intestinais , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , RNA Ribossômico 16S/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Inflamação , Estresse Oxidativo
20.
Front Med (Lausanne) ; 10: 1201468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601792

RESUMO

Purpose: To compare the effectiveness and safety of drug-eluting bead bronchial artery chemoembolization (DEB-BACE) with conventional bronchial artery chemoembolization (cBACE) and provide a novel treatment option for advanced non-small cell lung cancer (NSCLC). Methods: Patients with advanced NSCLC underwent DEB-BACE or cBACE and were screened retrospectively. Progression-free survival (PFS) and overall survival (OS) were the primary outcome indicators, while technical success rate, objective response rate (ORR), disease control rate (DCR), and adverse events (AEs) were the secondary ones. Results: A total of 41 patients were enrolled in the study, 12 in the DEB-BACE group and 29 in the cBACE group, according to the treatment regimen. No patient achieved complete response. Eighteen patients achieved partial response (9 in each group), 15 patients achieved stable disease (3 in the DEB-BACE group and 12 in the cBACE group), and eight patients achieved progressive disease (all in the cBACE group) when treated for 2 months. The overall ORR and DCR were 43.9% (18/41) and 80.5% (33/41), respectively. ORR and DCR in the DEB-BACE group were 50.0% (9/12) and 100.0% (12/12), respectively, while ORR and DCR in the cBACE group were 31.0% (9/29) and 72.4% (21/29), respectively. Compared to cBACE, the ORR and DCR of DEB-BACE were significantly improved (p < 0.05). The median PFS was better in the DEB-BACE group than in the cBACE group (6.95 months vs. 3.20 months, respectively, Hazard Ratio [HR] = 0.416; p = 0.005). Furthermore, the median OS was significantly better in the DEB-BACE group than in the cBACE group (28.5 months vs. 22.5 months, respectively, HR = 0.316; p = 0.020). Conclusion: DEB-BACE has a good safety and therapeutic profile in advanced NSCLC and is superior to cBACE. DEB-BACE can be used as an alternative treatment option for advanced NSCLC, even in elderly patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA