RESUMO
Increasing evidence indicates a significant correlation between gut microbiota (GM) and susceptibility to chronic kidney disease (CKD). However, causal relationship presence remains uncertain. Mendelian randomization (MR) was applied to evaluate potential causal relation from GM to CKD. Genomic association analysis aggregates publicly online databases, utilizing Genome-Wide Association Study (GWAS) database focused on GM and CKD. For examination of potential causal connection from GM to CKD, a 2-way, 2-sample Mendelian randomization (MR) method was applied. Sensitivity analyses were utilized to scrutinize for heterogeneity, horizontal pleiotropy, MR outcomes resilience. Result from inverse variance weighting (IVW) method revealed that 10 microbiotas such as Porphyromonadaceae (ORâ =â 1.351, 95% CI: 1.114-1.638, Pâ =â .002), Dorea (ORâ =â 1.236, 95% CI: 1.040-1.468, Pâ =â .016), Ruminococcus torques group (ORâ =â 1.290, 95% CI: 1.035-1.608, Pâ =â .024) are potential CKD risk factors. Five microbiotas, including the Prevotellaceae (ORâ =â 0.814, 95% CI: 0.719-0.922, Pâ =â .001) are potential CKD protective factors. Sensitivity analyses reveal no horizontal pleiotropy or heterogeneity. Additionally, reverse MR results unveiled potential relation between CKD and disorders in 3 microbiotas, including Senegalimassilia. According to the investigation, MR method was employed to delve into reciprocal causal connection from GM to CKD. Our findings identified 15 types of GM causally linked to CKD, as well as CKD demonstrating causal associations with 3 types of GM. Further exploration of these associated GM types is hopeful to raise novel insights, for CKD preventing and early monitoring.
Assuntos
Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/epidemiologia , Microbioma Gastrointestinal/genética , Causalidade , Fatores de RiscoRESUMO
BACKGROUND: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood. Little is known about how infancy growth trajectories affect adiposity in early childhood in LGA. METHODS: In the Shanghai Birth Cohort, we followed up 259 LGA (birth weight >90th percentile) and 1673 appropriate-for-gestational age (AGA, 10th-90th percentiles) children on body composition (by InBody 770) at age 4 years. Adiposity outcomes include body fat mass (BFM), percent body fat (PBF), body mass index (BMI), overweight/obesity, and high adiposity (PBF >85th percentile). RESULTS: Three weight growth trajectories (low, mid, and high) during infancy (0-2 years) were identified in AGA and LGA subjects separately. BFM, PBF and BMI were progressively higher from low- to mid-to high-growth trajectories in both AGA and LGA children. Compared to the mid-growth trajectory, the high-growth trajectory was associated with greater increases in BFM and the odds of overweight/obesity or high adiposity in LGA than in AGA children (tests for interactions, all P < 0.05). CONCLUSIONS: Weight trajectories during infancy affect adiposity in early childhood regardless of LGA or not. The study is the first to demonstrate that high-growth weight trajectory during infancy has a greater impact on adiposity in early childhood in LGA than in AGA subjects. IMPACT: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood, but little is known about how weight trajectories during infancy affect adiposity during early childhood in LGA subjects. The study is the first to demonstrate a greater impact of high-growth weight trajectory during infancy (0-2 years) on adiposity in early childhood (at age 4 years) in subjects with fetal overgrowth (LGA) than in those with normal birth size (appropriate-for-gestational age). Weight trajectory monitoring may be a valuable tool in identifying high-risk LGA children for close follow-ups and interventions to decrease the risk of obesity.
RESUMO
The ability of neural stem/progenitor cells (NSPCs) to proliferate and differentiate is required through different stages of neurogenesis. Disturbance in the regulation of neurogenesis causes many neurological diseases, such as intellectual disability, autism, and schizophrenia. However, the intrinsic mechanisms of this regulation in neurogenesis remain poorly understood. Here, we report that Ash2l (Absent, small or homeotic discs-like 2), one core component of a multimeric histone methyltransferase complex, is essential for NSPC fate determination during postnatal neurogenesis. Deletion of Ash2l in NSPCs impairs their capacity for proliferation and differentiation, leading to simplified dendritic arbors in adult-born hippocampal neurons and deficits in cognitive abilities. RNA sequencing data reveal that Ash2l primarily regulates cell fate specification and neuron commitment. Furthermore, we identified Onecut2, a major downstream target of ASH2L characterized by bivalent histone modifications, and demonstrated that constitutive expression of Onecut2 restores defective proliferation and differentiation of NSPCs in adult Ash2l-deficient mice. Importantly, we identified that Onecut2 modulates TGF-ß signaling in NSPCs and that treatment with a TGF-ß inhibitor rectifies the phenotype of Ash2l-deficient NSPCs. Collectively, our findings reveal the ASH2L-Onecut2-TGF-ß signaling axis that mediates postnatal neurogenesis to maintain proper forebrain function.
Assuntos
Células-Tronco Neurais , Neurogênese , Transdução de Sinais , Animais , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
Aim: Adverse (poor or excessive) fetal growth "programs" an elevated risk of type 2 diabetes. Fatty acid binding protein 4 (FABP4) has been implicated in regulating insulin sensitivity and lipid metabolism relevant to fetal growth. We sought to determine whether FABP4 is associated with poor or excessive fetal growth and fetal lipids. Methods: In a nested case-control study in the Shanghai Birth Cohort including 60 trios of small-for-gestational-age (SGA, an indicator of poor fetal growth), large-for-gestational-age (LGA, an indicator of excessive fetal growth) and optimal-for-gestational-age (OGA, control) infants, we measured cord blood concentrations of FABP4 and lipids [high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterols, triglycerides (TG)]. Results: Adjusting for maternal and neonatal characteristics, higher cord blood FABP4 concentrations were associated with a lower odds of SGA [OR = 0.29 (0.11-0.77) per log unit increment in FABP4, P = 0.01], but were not associated with LGA (P = 0.46). Cord blood FABP4 was positively correlated with both LDL (r = 0.29, P = 0.025) and HDL (r = 0.33, P = 0.01) in LGA infants only. Conclusion: FABP4 was inversely associated with the risk of SGA. The study is the first to demonstrate LGA-specific positive correlations of cord blood FABP4 with HDL and LDL cholesterols, suggesting a role of FABP4 in fetal lipid metabolism in subjects with excessive fetal growth.
RESUMO
Background and objective: Gestational diabetes mellitus (GDM) "programs" an elevated risk of metabolic dysfunctional disorders in the offspring, and has been associated with elevated leptin and decreased adiponectin levels in cord blood. We sought to assess whether docosahexaenoic acid (DHA) supplementation in GDM affects neonatal metabolic health biomarkers especially leptin and adiponectin. Methods: In a randomized controlled trial, singleton pregnant women with de novo diagnosis of GDM at 24-28 weeks of gestation were randomized to dietary supplementation of 500 mg DHA per day (intervention, n = 30) until delivery or standard care (control, n = 38). The primary outcomes were cord blood leptin and total adiponectin concentrations. Secondary outcomes included high-molecular-weight (HMW) adiponectin and insulin-like growth factor-1 (IGF-1) concentrations in cord blood, maternal glycemic control post-intervention and birth weight (z score). In parallel, 38 euglycemic pregnant women were recruited for comparisons of cord blood biomarkers. Results: There were no significant differences in cord serum leptin, total and HMW adiponectin and IGF-1 concentrations between DHA supplementation and control groups (all p > 0.05). Maternal fasting and 2-h postprandial blood glucose levels at 12-16 weeks post-intervention were similar between the two groups. The newborns in the DHA group had higher birth weight z scores (p = 0.02). Cord blood total and HMW adiponectin concentrations were significantly lower in GDM vs. euglycemic pregnancies. Conclusion: Docosahexaenoic acid supplementation at 500 mg/day in GDM women did not affect neonatal metabolic biomarkers including leptin, adiponectin and IGF-1. The results are reassuring in light of the absence of influence on neonatal adipokines (leptin and adiponectin), and potential benefits to fetal growth and development. Clinical Trial Registration: Clinicaltrials.gov, NCT03569501.
RESUMO
Traumatic brain injury usually results in neuronal loss and cognitive deficits. Promoting endogenous neurogenesis has been considered as a viable treatment option to improve functional recovery after TBI. However, neural stem/progenitor cells (NSPCs) in neurogenic regions are often unable to migrate and differentiate into mature neurons at the injury site. Transglutaminase 2 (TGM2) has been identified as a crucial component of neurogenic niche, and significantly dysregulated after TBI. Therefore, we speculate that TGM2 may play an important role in neurogenesis after TBI, and strategies targeting TGM2 to promote endogenous neural regeneration may be applied in TBI therapy. Using a tamoxifen-induced Tgm2 conditional knockout mouse line and a mouse model of stab wound injury, we investigated the role and mechanism of TGM2 in regulating hippocampal neurogenesis after TBI. We found that Tgm2 was highly expressed in adult NSPCs and up-regulated after TBI. Conditional deletion of Tgm2 resulted in the impaired proliferation and differentiation of NSPCs, while Tgm2 overexpression enhanced the abilities of self-renewal, proliferation, differentiation, and migration of NSPCs after TBI. Importantly, injection of lentivirus overexpressing TGM2 significantly promoted hippocampal neurogenesis after TBI. Therefore, TGM2 is a key regulator of hippocampal neurogenesis and a pivotal therapeutic target for intervention following TBI.
Assuntos
Lesões Encefálicas Traumáticas , Neurogênese , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , Camundongos , Lesões Encefálicas Traumáticas/fisiopatologia , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos Knockout , Células-Tronco Neurais , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismoRESUMO
BACKGROUND: Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MECP2), is one of the most prevalent neurodevelopmental disorders in girls. However, the underlying mechanism of MECP2 remains largely unknown and currently there is no effective treatment available for RTT. METHODS: We generated MECP2-KO human embryonic stem cells (hESCs), and differentiated them into neurons and cerebral organoids to investigate phenotypes of MECP2 loss-of-function, potential therapeutic agents, and the underlying mechanism by transcriptome sequencing. RESULTS: We found that MECP2 deletion caused reduced number of hESCs-derived neurons and simplified dendritic morphology. Moreover, MECP2-KO cortical organoids exhibited fewer neural progenitor cells and neurons at day 60. Electrophysiological recordings showed that MECP2 deletion altered synaptic activity in organoids. Transcriptome analysis of organoids identified many genes in the PI3K-AKT pathway downregulated following MECP2 deletion. Treatment with either KW-2449 or VPA, small molecules for the activation of PI3K-AKT signaling pathway, alleviated neuronal deficits and transcriptome changes in MECP2-KO human neuronal models. CONCLUSIONS: These findings suggest that KW-2449 and VPA might be promising drugs for RTT treatment.
Assuntos
Células-Tronco Embrionárias Humanas , Síndrome de Rett , Feminino , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/metabolismo , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismoRESUMO
BACKGROUND: Fetal overgrowth "programs" an elevated risk of type 2 diabetes in adulthood. Epigenetic alterations may be a mechanism in programming the vulnerability. We sought to characterize genome-wide alterations in placental gene methylations in fetal overgrowth and the associations with metabolic health biomarkers including leptin, adiponectin and fetal growth factors. RESULTS: Comparing genome-wide placental gene DNA methylations in large-for-gestational-age (LGA, an indicator of fetal overgrowth, n = 30) versus optimal-for-gestational-age (OGA, control, n = 30) infants using the Illumina Infinium Human Methylation-EPIC BeadChip, we identified 543 differential methylation positions (DMPs; 397 hypermethylated, 146 hypomethylated) at false discovery rate < 5% and absolute methylation difference > 0.05 after adjusting for placental cell-type heterogeneity, maternal age, pre-pregnancy BMI and HbA1c levels during pregnancy. Twenty-five DMPs annotated to 20 genes (QSOX1, FCHSD2, LOC101928162, ADGRB3, GCNT1, TAP1, MYO16, NAV1, ATP8A2, LBXCOR1, EN2, INCA1, CAMTA2, SORCS2, SLC4A4, RPA3, UMAD1,USP53, OR2L13 and NR3C2) could explain 80% of the birth weight variations. Pathway analyses did not detect any statistically significant pathways after correcting for multiple tests. We validated a newly discovered differentially (hyper-)methylated gene-visual system homeobox 1 (VSX1) in an independent pyrosequencing study sample (LGA 47, OGA 47). Our data confirmed a hypermethylated gene-cadherin 13 (CDH13) reported in a previous epigenome-wide association study. Adiponectin in cord blood was correlated with its gene methylation in the placenta, while leptin and fetal growth factors (insulin, IGF-1, IGF-2) were not. CONCLUSIONS: Fetal overgrowth may be associated with a large number of altered placental gene methylations. Placental VSX1 and CDH13 genes are hypermethylated in fetal overgrowth. Placental ADIPOQ gene methylations and fetal circulating adiponectin levels were correlated, suggesting the contribution of placenta-originated adiponectin to cord blood adiponectin.
Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Gravidez , Feminino , Humanos , Adulto , Placenta/metabolismo , Metilação de DNA , Leptina/genética , Adiponectina , Diabetes Gestacional/genética , Diabetes Mellitus Tipo 2/genética , Macrossomia Fetal/genética , Macrossomia Fetal/metabolismo , Idade Gestacional , Sangue Fetal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Desenvolvimento Fetal/genética , Proteínas de Transporte/genética , Proteínas de Membrana/genéticaRESUMO
Gestational diabetes mellitus (GDM) "program" an elevated risk of metabolic syndrome in the offspring. Epigenetic alterations are a suspected mechanism. GDM has been associated with placental DNA methylation changes in some epigenome-wide association studies. It remains unclear which genes or pathways are affected, and whether any placental differential gene methylations are correlated to fetal growth or circulating metabolic health biomarkers. In an epigenome-wide association study using the Infinium MethylationEPIC Beadchip, we sought to identify genome-wide placental differentially methylated genes and enriched pathways in GDM, and to assess the correlations with fetal growth and metabolic health biomarkers in cord blood. The study samples were 30 pairs of term placentas in GDM vs. euglycemic pregnancies (controls) matched by infant sex and gestational age at delivery in the Shanghai Birth Cohort. Cord blood metabolic health biomarkers included insulin, C-peptide, proinsulin, IGF-I, IGF-II, leptin and adiponectin. Adjusting for maternal age, pre-pregnancy BMI, parity, mode of delivery and placental cell type heterogeneity, 256 differentially methylated positions (DMPs,130 hypermethylated and 126 hypomethylated) were detected between GDM and control groups accounting for multiple tests with false discovery rate <0.05 and beta-value difference >0.05. WSCD2 was identified as a differentially methylated gene in both site- and region-level analyses. We validated 7 hypermethylated (CYP1A2, GFRA1, HDAC4, LIMS2, NAV3, PAX6, UPK1B) and 10 hypomethylated (DPP10, CPLX1, CSMD2, GPR133, NRXN1, PCSK9, PENK, PRDM16, PTPRN2, TNXB) genes reported in previous epigenome-wide association studies. We did not find any enriched pathway accounting for multiple tests. DMPs in 11 genes (CYP2D7P1, PCDHB15, ERG, SIRPB1, DKK2, RAPGEF5, CACNA2D4, PCSK9, TSNARE1, CADM2, KCNAB2) were correlated with birth weight (z score) accounting for multiple tests. There were no significant correlations between placental gene methylations and cord blood biomarkers. In conclusions, GDM was associated with DNA methylation changes in a number of placental genes, but these placental gene methylations were uncorrelated to the observed metabolic health biomarkers (fetal growth factors, leptin and adiponectin) in cord blood. We validated 17 differentially methylated placental genes in GDM, and identified 11 differentially methylated genes relevant to fetal growth.
Assuntos
Diabetes Gestacional , Adiponectina/metabolismo , Biomarcadores , China , Metilação de DNA , Diabetes Gestacional/metabolismo , Feminino , Sangue Fetal/metabolismo , Desenvolvimento Fetal , Humanos , Lactente , Leptina/metabolismo , Paridade , Placenta/metabolismo , Gravidez , Pró-Proteína Convertase 9/genéticaRESUMO
CONTEXT: Fetal overgrowth "programs" an elevated risk of obesity and type 2 diabetes in adulthood. Plausibly, adipokines may be involved in programming metabolic health. OBJECTIVE: This work aimed to evaluate whether large-for-gestational-age (LGA), an indicator of fetal overgrowth, is associated with altered circulating leptin and adiponectin levels in infancy, and assess the determinants. METHODS: In the Canadian 3D birth cohort, we studied 70 LGA (birth weightâ >â 90th percentile) and 140 optimal-for-gestational-age (OGA, 25th-75th percentiles) infants matched by maternal ethnicity, smoking, and gestational age at delivery. The primary outcomes were fasting leptin, and total and high-molecular-weight (HMW) adiponectin concentrations at age 2 years. RESULTS: LGA infants had higher body mass index (BMI) than OGA infants. However, there were no significant differences in leptin, and total and HMW adiponectin concentrations. Leptin concentrations were positively associated with female sex, weight (z score) gain 0 to 24 months, current BMI, and the sum of triceps and subscapular skinfold thickness, and negatively associated with maternal age and White ethnicity. Female sex was associated with lower total and HMW adiponectin concentrations. Weight (z score) gain 0 to 24 months and current BMI were positively correlated with total and HMW adiponectin concentrations in LGA infants only. CONCLUSION: This study is the first to demonstrate that LGA does not matter for circulating leptin and adiponectin concentrations in infancy, and there may be LGA-specific positive associations between weight gain or current BMI and adiponectin concentrations in infancy, suggesting dysfunction in establishing the adiposity-adiponectin negative feedback loop in LGA individuals.
Assuntos
Adiponectina/sangue , Macrossomia Fetal/metabolismo , Resistência à Insulina , Leptina/sangue , Aumento de Peso , Adiponectina/metabolismo , Adiposidade/fisiologia , Peso ao Nascer/fisiologia , Canadá , Estudos de Casos e Controles , Pré-Escolar , Feminino , Macrossomia Fetal/sangue , Macrossomia Fetal/complicações , Seguimentos , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Leptina/metabolismo , Masculino , Fatores SexuaisRESUMO
Fatty acid binding protein 4 (FABP4) has been associated with insulin resistance. Gestational diabetes mellitus (GDM) impairs fetal insulin sensitivity. Female newborns are more insulin resistant than male newborns. We sought to evaluate the association between GDM and cord blood FABP4, and explore potential sex dimorphic associations and the roles of sex hormones. This was a nested case-control study in the Shanghai Birth Cohort, including 153 pairs of newborns in GDM vs. euglycemic pregnancies matched by infant sex and gestational age at delivery. Cord plasma FABP4, leptin, total and high-molecular-weight adiponectin, testosterone and estradiol concentrations were measured. Adjusting for maternal and neonatal characteristics, cord plasma FABP4 (Mean ± SD: 27.0 ± 19.6 vs. 18.8 ± 9.6 ng/mL, P=0.045) and estradiol (52.0 ± 28.6 vs. 44.2 ± 26.6, ng/mL, P=0.005) concentrations were higher comparing GDM vs. euglycemic pregnancies in males, but similar in females (all P>0.5). Mediation analyses showed that the positive association between GDM and cord plasma FABP4 in males could be partly mediated by estradiol (P=0.03), but not by testosterone (P=0.72). Cord plasma FABP4 was positively correlated with total adiponectin in females (r=0.17, P=0.053), but the correlation was in the opposite direction in males (r=-0.11, P=0.16) (test for difference in r, P=0.02). Cord plasma FABP4 was not correlated with leptin in both sexes. The study is the first to demonstrate sex-dimorphic associations between GDM and cord plasma FABP4 or estradiol, and between FABP4 and adiponectin in newborns. GDM may affect fetal circulating FABP4 and estradiol levels in males only.
Assuntos
Diabetes Gestacional/metabolismo , Estradiol/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Medula Espinal/metabolismo , Adiponectina/sangue , Estudos de Casos e Controles , Estudos de Coortes , Proteínas de Ligação a Ácido Graxo/sangue , Feminino , Humanos , Recém-Nascido , Leptina/sangue , Masculino , Gravidez , Caracteres Sexuais , Testosterona/sangueRESUMO
Histone lysine crotonylation (Kcr), an evolutionarily conserved and widespread non-acetyl short-chain lysine acylation, plays important roles in transcriptional regulation and disease processes. However, the genome-wide distribution, dynamic changes, and associations with gene expression of histone Kcr during developmental processes are largely unknown. In this study, we find that histone Kcr is mainly located in active promoter regions, acts as an epigenetic hallmark of highly expressed genes, and regulates genes participating in metabolism and proliferation. Moreover, elevated histone Kcr activates bivalent promoters to stimulate gene expression in neural stem/progenitor cells (NSPCs) by increasing chromatin openness and recruitment of RNA polymerase II (RNAP2). Functionally, these activated genes contribute to transcriptome remodeling and promote neuronal differentiation. Overall, histone Kcr marks active promoters with high gene expression and modifies the local chromatin environment to allow gene activation.
Assuntos
Histonas , Células-Tronco Neurais , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-TraducionalRESUMO
Fibroblast growth factor 19 (FGF19) has been implicated in glucose homeostasis. Gestational diabetes mellitus (GDM) enhances fetal insulin secretion and fetal growth. Girls weigh less and are more insulin resistant than boys at birth. We sought to assess whether FGF19 is associated with GDM and fetal growth and explore potential sex dimorphic associations. This was a nested case-control study in the Shanghai Birth Cohort, including 153 pairs of newborns of GDM versus euglycemic mothers matched by infant's sex and gestational age at birth. Cord plasma FGF19, insulin, C-peptide, proinsulin, IGF-I and IGF-II concentrations were measured. Cord plasma FGF19 concentrations were similar in GDM versus euglycemic pregnancies (mean ± SD: 43.5 ± 28.2 versus 44.5 ± 30.2 pg/mL, P=0.38). FGF19 was not correlated with IGF-I or IGF-II. FGF19 concentrations were positively correlated with birth weight (r=0.23, P=0.01) and length (r=0.21, P=0.02) z scores, C-peptide (r=0.27, P=0.002) and proinsulin (r=0.27, P=0.002) concentrations in females. Each SD increment in cord plasma FGF19 was associated with a 0.25 (0.07-0.43) increase in birth weight z score in females. In contrast, FGF19 was not correlated with birth weight or length in males. These sex dimorphic associations remained after adjusting for maternal and neonatal characteristics. The study is the first to demonstrate that GDM does not matter for cord blood FGF19 concentrations. The female specific positive correlation between FGF19 and birth weight is suggestive of a sex-dimorphic role of FGF19 in fetal growth. The observations call for more studies to validate the novel findings and elucidate the underlying mechanisms.
Assuntos
Diabetes Gestacional/sangue , Sangue Fetal/química , Desenvolvimento Fetal , Fatores de Crescimento de Fibroblastos/sangue , Peso ao Nascer , Peptídeo C/sangue , Estudos de Casos e Controles , Feminino , Humanos , Recém-Nascido , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like II/análise , Masculino , Gravidez , Proinsulina/sangueRESUMO
5-hydroxytryptamine receptor 5B (5-HT5B) is a gene coding for a G protein-coupled receptor (GPCR) that plays key roles in several neurodevelopmental disorders. Our previous study showed that disruption of 5-HT5B induced by lysine (K)-specific demethylase 6A (Kdm6a, also known as Utx) conditional knockout (cKO) in mouse hippocampus was associated with cognition deficits underlying intellectual disability in Kabuki syndrome (KS), a rare disease associated with multiple congenital and developmental abnormalities, especially neurobehavioral features. Here we show that Utx knockout (KO) in cultured hippocampal neurons leads to impaired neuronal excitability and calcium homeostasis. In addition, we show that 5-HT5B overexpression reverses dysregulation of neuronal excitability, intracellular calcium homeostasis, and long-term potentiation (LTP) in cultured Utx KO hippocampal neurons and hippocampal slices. More importantly, overexpression of 5-HT5B in Utx cKO mice results in reversal of abnormal anxiety-like behaviors and impaired spatial memory ability. Our findings therefore indicate that 5-HT5B, as a downstream target of Utx, functions to modulate electrophysiological outcomes, thereby affecting behavioral activities in KS mouse models.
RESUMO
Circular RNA (circRNA) molecules contain microRNA (miRNA) response elements that are able to competitively bind miRNAs as well as function as miRNA sponges within cells, which can reduce miRNA inhibition of target genes, thereby increasing their expression. TargetScan and miRanda bioinformatic tools were used to analyze the binding sites between genes. The relative levels of gene expression in tissues and cells were verified using quantitative reverse transcription-polymerase chain reaction. Inhibition of cell proliferation was detected using a WST-8 method. Cell invasion ability and migration ability were assessed using a Transwell migration assay and a scratch assay, respectively. The binding of miRNA and circRNA was detected using an RNA pull-down assay. Bifluorescence reporter gene vectors were constructed to verify the binding of miRNA to messenger RNA. A tumor model of cervical cancer cell transplantation in mice was constructed to observe the effect of the genes on tumor growth. hsa_circ_0031288 and B-cell CLL/lymphoma 6 (Bcl-6) exhibited high expression in cervical cancer cells and tissue, while hsa-miR-139-3p exhibited low expression. Reducing hsa_circ_0031288 and Bcl-6 expression or increasing hsa-miR-139-3p expression significantly inhibited the migration, invasion, proliferation, and growth of xenograft and HeLa cells. hsa_circ_0031288 had a regulatory effect on hsa-miR-139-3p, and hsa-miR-139-3p targeted the 3' untranslated region of Bcl-6. Reducing hsa_circ_0031288 expression promoted hsa-miR-139-3p expression, while overexpressing miR-139-3p inhibited the transcription of Bcl-6. In the cervical cancer HeLa cell line, the hsa_circ_0031288/hsa-miR-139-3p/Bcl-6 regulatory axis affects cell migration and proliferation, and its mechanism may involve hsa_circ_0031288 acting as a sponge for hsa-miR-139-3p, thereby relieving the transcriptional inhibition of Bcl-6. This suggests an approach for elucidating the pathogenesis of cervical cancer while offering new intervention targets for cervical cancer treatment.
Assuntos
Movimento Celular/genética , Retroalimentação Fisiológica , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA Circular/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Interferência de RNA , RNA Circular/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Carga Tumoral/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
High-throughput sequencing has facilitated the identification of many types of non-coding RNAs (ncRNAs) involved in diverse cellular processes. NcRNAs as epigenetic mediators play key roles in neuronal development, maintenance, and dysfunction by controlling gene expression at multiple levels. NcRNAs may not only target specific DNA or RNA for gene silence but may also directly interact with chromatin-modifying proteins like Polycomb group (PcG) proteins to drive orchestrated transcriptional programs. Recent significant progress has been made in characterizing ncRNAs and PcG proteins involved in transcriptional, post-transcriptional, and epigenetic regulation. More importantly, dysregulation of ncRNAs, PcG proteins, and interplay among them is closely associated with the pathogenesis of central nervous system (CNS) disorders. In this review, we focus on the interplay between ncRNAs and PcG proteins in the CNS and highlight the functional roles of the partnership during neural development and diseases.
Assuntos
Sistema Nervoso Central/metabolismo , Redes Reguladoras de Genes , Proteínas do Grupo Polycomb/metabolismo , RNA não Traduzido/metabolismo , Animais , Epigênese Genética , Humanos , RNA não Traduzido/genéticaRESUMO
EED (embryonic ectoderm development) is a core component of the Polycomb repressive complex 2 (PRC2) which catalyzes the methylation of histone H3 lysine 27 (H3K27) during the process of self-renewal, proliferation, and differentiation of embryonic stem cells. However, its function in the mammalian nervous system remains unexplored. Here, we report that loss of EED in the brain leads to postnatal lethality, impaired neuronal differentiation, and malformation of the dentate gyrus. Overexpression of Sox11, a downstream target of EED through interaction with H3K27me1, restores the neuronal differentiation capacity of EED-ablated neural stem/progenitor cells (NSPCs). Interestingly, downregulation of Cdkn2a, another downstream target of EED which is regulated in an H3K27me3-dependent manner, reverses the proliferation defect of EED-ablated NSPCs. Taken together, these findings established a critical role of EED in the development of hippocampal dentate gyrus, which might shed new light on the molecular mechanism of intellectual disability in patients with EED mutations.
Assuntos
Diferenciação Celular/genética , Giro Denteado/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Complexo Repressor Polycomb 2/genética , Fatores de Transcrição SOXC/genética , Animais , Autorrenovação Celular/genética , Perfilação da Expressão Gênica , Loci Gênicos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Neurônios/citologia , Fenótipo , Complexo Repressor Polycomb 2/metabolismoRESUMO
Neurons in the central nervous system (CNS) lose their intrinsic ability and fail to regenerate, but the underlying mechanisms are largely unknown. Polycomb group (PcG) proteins, which include PRC1 and PRC2 complexes function as gene repressors and are involved in many biological processes. Here we report that PRC1 components (polycomb chromobox (CBX) 2, 7, and 8) are novel regulators of axon growth and regeneration. Especially, knockdown of CBX7 in either embryonic cortical neurons or adult dorsal root ganglion (DRG) neurons enhances their axon growth ability. Two important transcription factors GATA4 and SOX11 are functional downstream targets of CBX7 in controlling axon regeneration. Moreover, knockdown of GATA4 or SOX11 in cultured DRG neurons inhibits axon regeneration response from CBX7 downregulation in DRG neurons. These findings suggest that targeting CBX signaling pathway may be a novel approach for promoting the intrinsic regenerative capacity of damaged CNS neurons.
Assuntos
Axônios/fisiologia , Proteínas do Grupo Polycomb/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , Fator de Transcrição GATA4/antagonistas & inibidores , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Gânglios Espinais/citologia , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/antagonistas & inibidores , Proteínas do Grupo Polycomb/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Regeneração , Fatores de Transcrição SOXC/antagonistas & inibidores , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Nervo Isquiático/lesõesRESUMO
The present study aimed at testing the hypothesis that application of multiscale cross-approximate entropy (MCAE) analysis in the study of nonlinear coupling behavior of two synchronized time series of different natures [i.e., R-R interval (RRI) and crest time (CT, the time interval from foot to peakof a pulse wave)] could yield information on complexity related to diabetes-associated vascular changes. Signals of a single waveform parameter (i.e., CT) from photoplethysmography and RRI from electrocardiogram were simultaneously acquired within a period of one thousand cardiac cycles for the computation of different multiscale entropy indices from healthy young adults (n = 22) (Group 1), upper-middle aged non-diabetic subjects (n = 34) (Group 2) and diabetic patients (n = 34) (Group 3). The demographic (i.e., age), anthropometric (i.e., body height, body weight, waist circumference, body-mass index), hemodynamic (i.e., systolic and diastolic blood pressures), and serum biochemical (i.e., high- and low-density lipoprotein cholesterol, total cholesterol, and triglyceride) parameters were compared with different multiscale entropy indices including small- and large-scale multiscale entropy indices for CT and RRI [MEISS(CT), MEILS(CT), MEISS(RRI), MEILS(RRI), respectively] as well as small- and large-scale multiscale cross-approximate entropy indices [MCEISS, MCEILS, respectively]. The results demonstrated that both MEILS(RRI) and MCEILS significantly differentiated between Group 2 and Group 3 (all p < 0.017). Multivariate linear regression analysis showed significant associations of MEILS(RRI) and MCEILS(RRI,CT) with age and glycated hemoglobin level (all p < 0.017). The findings highlight the successful application of a novel multiscale cross-approximate entropy index in non-invasively identifying diabetes-associated subtle changes in vascular functional integrity, which is of clinical importance in preventive medicine.
RESUMO
The polycomb repressive complex 2 (PRC2) is responsible for catalyzing both di- and trimethylation of histone H3 at lysine 27 (H3K27me2/3). The subunits of PRC2 are widely expressed in the central nervous system (CNS). PRC2 as well as H3K27me2/3, play distinct roles in neuronal identity, proliferation and differentiation of neural stem/progenitor cells, neuronal morphology, and gliogenesis. Mutations or dysregulations of PRC2 subunits often cause neurological diseases. Therefore, PRC2 might represent a common target of different pathological processes that drive neurodegenerative diseases. A better understanding of the intricate and complex regulatory networks mediated by PRC2 in CNS will help to develop new therapeutic approaches and to generate specific brain cell types for treating neurological diseases.