Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.054
Filtrar
1.
Respir Res ; 25(1): 201, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725041

RESUMO

Growth differentiation factor 15 (GDF15) as a stress response cytokine is involved in the development and progression of several diseases associated with metabolic disorders. However, the regulatory role and the underlying mechanisms of GDF15 in sepsis remain poorly defined. Our study analyzed the levels of GDF15 and its correlations with the clinical prognosis of patients with sepsis. In vivo and in vitro models of sepsis were applied to elucidate the role and mechanisms of GDF15 in sepsis-associated lung injury. We observed strong correlations of plasma GDF15 levels with the levels of C-reactive protein (CRP), procalcitonin (PCT), lactate dehydrogenase (LDH), and lactate as well as Sequential Organ Failure Assessment (SOFA) scores in patients with sepsis. In the mouse model of lipopolysaccharide-induced sepsis, recombinant GDF15 inhibited the proinflammatory responses and alleviated lung tissue injury. In addition, GDF15 decreased the levels of cytokines produced by alveolar macrophages (AMs). The anti-inflammatory effect of glycolysis inhibitor 2-DG on AMs during sepsis was mediated by GDF15 via inducing the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) and the expression of activating transcription factor 4 (ATF4). Furthermore, we explored the mechanism underlying the beneficial effects of GDF15 and found that GDF15 inhibited glycolysis and mitogen-activated protein kinases (MAPK)/nuclear factor-κB (NF-κB) signaling via promoting AMPK phosphorylation. This study demonstrated that GDF15 inhibited glycolysis and NF-κB/MAPKs signaling via activating AMP-activated protein kinase (AMPK), thereby alleviating the inflammatory responses of AMs and sepsis-associated lung injury. Our findings provided new insights into novel therapeutic strategies for treating sepsis.


Assuntos
Proteínas Quinases Ativadas por AMP , Glicólise , Fator 15 de Diferenciação de Crescimento , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , Sepse , Fator 15 de Diferenciação de Crescimento/metabolismo , Animais , Camundongos , Sepse/metabolismo , Sepse/tratamento farmacológico , Masculino , Glicólise/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Lesão Pulmonar/metabolismo , Feminino , Pessoa de Meia-Idade
2.
Sci Rep ; 14(1): 10745, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730240

RESUMO

Gastric cancer is one of the most common malignant tumors, and chemotherapy is the main treatment for advanced gastric cancer. However, chemotherapy resistance leads to treatment failure and poor prognosis in patients with gastric cancer. Multidrug resistance (MDR) is a major challenge that needs to be overcome in chemotherapy. According to recent research, ferroptosis activation is crucial for tumor therapeutic strategies. In this work, we explored the solution to chemoresistance in gastric cancer by investigating the effects of the Chinese medicine monomer baicalin on ferroptosis. Baicalin with different concentrations was used to treat the parent HGC27 and drug-resistant HGC27/L cells of gastric cancer. Cell viability was measured by CCK8, and synergistic effects of baicalin combined with oxaliplatin were evaluated using Synergy Finder software. The effects of baicalin on organelles and cell morphology were investigated using projective electron microscopy. Iron concentration, MDA production and GSH inhibition rate were measured by colorimetry. ROS accumulation was detected by flow cytometry. The ferroptosis-related genes (IREB2, TfR, GPX4, FTH1), P53, and SLC7A11 were analysed by Western blot, and the expression differences of the above proteins between pretreatment and pretreatment of different concentrations of baicalin, were assayed in both parental HGC27 cells and Oxaliplatin-resistant HGC27/L cells. Mechanically, Baicalin disrupted iron homeostasis and inhibits antioxidant defense, resulting in iron accumulation, lipid peroxide aggregation, and specifically targeted and activated ferroptosis by upregulating the expression of tumor suppressor gene p53, thereby activating the SLC7A11/GPX4/ROS pathway mediated by it. Baicalin activates ferroptosis through multiple pathways and targets, thereby inhibiting the viability of oxaliplatin-resistant gastric cancer HGC27/L cells and enhancing the sensitivity to oxaliplatin chemotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ferroptose , Flavonoides , Oxaliplatina , Neoplasias Gástricas , Proteína Supressora de Tumor p53 , Ferroptose/efeitos dos fármacos , Humanos , Flavonoides/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Oxaliplatina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Sinergismo Farmacológico , Espécies Reativas de Oxigênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
Thromb Res ; 238: 197-205, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38733691

RESUMO

IMPORTANCE: COVID-19 has disproportionately affected racialized populations, with particular impact among individuals of Black individuals. However, it is unclear whether disparities in venous thromboembolic (VTE) complications exist between Black individuals and those belonging to other racial groups with confirmed SARS-CoV2 infections. OBJECTIVE: To summarize the prevalence and moderators associated with VTE among Black COVID-19 patients in minoritized settings, and to compare this to White and Asian COVID-19 patients according to sex, age, and comorbid health conditions (heart failure, cancer, obesity, hypertension). DESIGN SETTING, AND PARTICIPANTS: A systematic search of MEDLINE, Embase, CINAHL and CENTRAL for articles or reports published from inception to February 15, 2023. STUDY SELECTION: Reports on VTE among Black individuals infected with SARS-CoV2, in countries where Black people are considered a minority population group. DATA EXTRACTION AND SYNTHESIS: Study characteristics and results of eligible studies were independently extracted by 2 pairs of reviewers. VTE prevalence was extracted, and risk of bias was assessed. Prevalence estimates of VTE prevalence among Black individuals with COVID19 in each study were pooled. Where studies provided race-stratified VTE prevalence among COVID19 patients, odds ratios were generated using a random-effects model. MAIN OUTCOMES AND MEASURES: Prevalence of VTE, comprising of deep vein thrombosis and pulmonary embolism. RESULTS: Ten studies with 66,185 Black individuals reporting the prevalence of COVID-19 associated VTE were included. Weighted median age of included studies was 47.60. Pooled prevalence of COVID-19 associated VTE was 7.2 % (95 % CI, 3.8 % - 11.5 %) among Black individuals. Among individuals with SARS-CoV2 infections, Black population had higher risks of VTE compared to their White (OR = 1.79, [95 % CI 1.28-2.53], p < .001) or Asian (OR = 2.01, [95 % CI, 1.14-3.60], p = .017) counterparts, or patients with other racial identities (OR = 2.01, [95 % CI, 1.39, 2.92]; p < .001). CONCLUSIONS AND RELEVANCE: Black individuals with COVID-19 had substantially higher risk of VTE compared to White or Asian individuals. Given racial disparities in thrombotic disease burden related to COVID-19, medical education, research, and health policy interventions are direly needed to ensure adequate disease awareness among Black individuals, to facilitate appropriate diagnosis and treatment among Black patients with suspected and confirmed VTE, and to advocate for culturally safe VTE prevention strategies, including pre-existing inequalities to the COVID-19 pandemic that persist after the crisis.

4.
ACS Chem Neurosci ; 15(10): 2070-2079, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691676

RESUMO

PDZ domains are modular domains that conventionally bind to C terminal or internal motifs of target proteins to control cellular functions through the regulation of protein complex assemblies. Almost all reported structures of PDZ-target protein complexes rely on fragments or peptides as target proteins. No intact target protein complexed with PDZ was structurally characterized. In this study, we used NMR spectroscopy and other biochemistry and biophysics tools to uncover insights into structural coupling between the PDZ domain of protein interacting with C-kinase 1 (PICK1) and α7 nicotinic acetylcholine receptors (α7 nAChR). Notably, the intracellular domains of both α7 nAChR and PICK1 PDZ exhibit a high degree of plasticity in their coupling. Specifically, the MA helix of α7 nAChR interacts with residues lining the canonical binding site of the PICK1 PDZ, while flexible loops also engage in protein-protein interactions. Both hydrophobic and electrostatic interactions mediate the coupling. Overall, the resulting structure of the α7 nAChR-PICK1 complex reveals an unconventional PDZ binding mode, significantly expanding the repertoire of functionally important PDZ interactions.


Assuntos
Proteínas de Transporte , Domínios PDZ , Ligação Proteica , Receptor Nicotínico de Acetilcolina alfa7 , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteínas de Transporte/metabolismo , Ligação Proteica/fisiologia , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Sítios de Ligação/fisiologia
5.
Biol Res ; 57(1): 24, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711133

RESUMO

Despite the record speed of developing vaccines and therapeutics against the SARS-CoV-2 virus, it is not a given that such success can be secured in future pandemics. In addition, COVID-19 vaccination and application of therapeutics remain low in developing countries. Rapid and low cost mass production of antiviral IgY antibodies could be an attractive alternative or complementary option for vaccine and therapeutic development. In this article, we rapidly produced SARS-CoV-2 antigens, immunized hens and purified IgY antibodies in 2 months after the SARS-CoV-2 gene sequence became public. We further demonstrated that the IgY antibodies competitively block RBD binding to ACE2, neutralize authentic SARS-CoV-2 virus and effectively protect hamsters from SARS-CoV-2 challenge by preventing weight loss and lung pathology, representing the first comprehensive study with IgY antibodies. The process of mass production can be easily implemented in most developing countries and hence could become a new vital option in our toolbox for combating viral pandemics. This study could stimulate further studies, optimization and potential applications of IgY antibodies as therapeutics and prophylactics for human and animals.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Galinhas , Gema de Ovo , Imunoglobulinas , SARS-CoV-2 , Animais , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Galinhas/imunologia , Cricetinae , Imunoglobulinas/imunologia , Gema de Ovo/imunologia , Anticorpos Antivirais/imunologia , Feminino , Mesocricetus , Vacinas contra COVID-19/imunologia
6.
Cell Signal ; : 111212, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719020

RESUMO

BACKGROUND AND OBJECTIVE: Periodontitis is a common oral disease closely related to immune response and this study is aimed to identify the key immune-related pathogenic genes and analyze the infiltration and function of immune cells in the disease using bioinformatics methods. METHODS: Transcriptome datasets and single-cell RNA sequencing (scRNA-seq) datasets were downloaded from the GEO database. We utilized weighted correlation network analysis and least absolute selection and shrinkage operator, protein-protein interaction network construction to screen out key pathogenic genes as well as conducted the cell-type identification by estimating relative subsets of RNA transcripts algorithm to analyze and characterize immune cell types in periodontal tissues. In addition to bioinformatics validations, clinical and cell samples were collected and mouse periodontitis models were constructed to validate the important role of key genes in periodontitis. RESULTS: Bioinformatics analysis pointed out the positive correlation between CXCR4 expression and periodontitis, and revealed the increased infiltration of neutrophils in periodontal inflammatory. Similar results were obtained from clinical samples and animal models. In addition, the clustering and functional enrichment results based on CXCR4 expression levels included activation of immune response and cell migration, implying the possible function of CXCR4 on regulating neutrophil dynamics, which might contribute to periodontitis. Subsequent validation experiments confirmed that the increased expression of CXCR4 in neutrophils under periodontitis, where cell migration-related pathways also were activated. CONCLUSION: CXCR4 could be the key pathogenic gene of periodontitis and CXCR4/CXCL12 signal axial might contribute to the development of periodontitis by mediating neutrophil dynamics, suggesting that CXCR4 could be a potential target to help identify novel strategies for the clinical diagnosis and treatment of periodontitis.

7.
Food Chem X ; 22: 101404, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38707784

RESUMO

2-amino-1-methyl-6-phenylimidazole [4,5-b] pyridine (PhIP) is one of the higher levels of HAAs produced in protein foods during heating. The effects of heating temperature, time, and concentration of precursors on PhIP and related substances in the chemical model system and roast pork patty were studied using HPLC-Q-Orbitrap-HRMS and GC-MS. Results showed that the heating temperature, time, and concentration of four precursors significantly affected PhIP and its related substances (P < 0.05) in the chemical model system. Among them, PhIP production was greatest when heating at 200 min with 220 °C, and the concentrations of phenylalanine, creatinine, glucose, and creatine added were 10, 20, 20, and 20 mmol/L, respectively. Moreover, as the fat proportion of roast pork patties increased, PhIP and its intermediate-phenylacetaldehyde concentrations increased substantially (P < 0.05). PCA results showed that the samples of PhIP and related substances gradually dispersed as the temperature and time increased, and there were obvious effects among them.

8.
J Agric Food Chem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722333

RESUMO

Ulvan is a complex sulfated polysaccharide extracted from Ulva, and ulvan lyases can degrade ulvan through a ß-elimination mechanism to obtain oligosaccharides. In this study, a new ulvan lyase, EPL15085, which belongs to the polysaccharide lyase (PL) 28 family from Tamlana fucoidanivorans CW2-9, was characterized in detail. The optimal pH and salinity are 9.0 and 0.4 M NaCl, respectively. The Km and Vmax of recombinant EPL15085 toward ulvan are 0.80 mg·mL-1 and 11.22 µmol·min -1 mg-1·mL-1, respectively. Unexpectedly, it is very resistant to high temperatures. After treatment at 100 °C, EPL15085 maintained its ability to degrade ulvan. Molecular dynamics simulation analysis and site-directed mutagenesis analysis indicated that the strong rigidity of the disulfide bond between Cys74-Cys102 in the N-terminus is related to its thermostability. In addition, oligosaccharides with disaccharides and tetrasaccharides were the end products of EPL15085. Based on molecular docking and site-directed mutagenesis analysis, Tyr177 and Leu134 are considered to be the crucial residues for enzyme activity. In conclusion, our study identified a new PL28 family of ulvan lyases, EPL15085, with excellent heat resistance that can expand the database of ulvan lyases and provide the possibility to make full use of ulvan.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38714615

RESUMO

Activated carbon was prepared from distilled spent grains (DSG) using K2CO3 activation and chitosan modification. The effects of activator dosage, activation temperature, and the incorporation of chitosan as a nitrogen source on the adsorption performance were studied in this paper. The activated carbons were characterised by scanning electron microscopy, X-ray photoelectron spectroscopy, and nitrogen and carbon dioxide gas adsorption. Under the optimal conditions, the BET-specific surface area, total pore volume, and microporous volume of the activated carbon were as high as 1142 m2/g, 0.62 cm3/g, and 0.40 cm3/g, respectively. Chitosan was used as the nitrogen source, and surface modification was carried out concurrently with the K2CO3 activation process. The results revealed a carbon dioxide adsorption capacity of 5.2 mmol/g at 273.15 K and 1 bar without a nitrogen source, which increased to 5.76 mmol/g after chitosan modification. The isosteric heat of adsorption of CO2 all exceed 20 kJ/mol, hinting at the coexistence of both physisorption and chemisorption. The adsorption behaviour of the DSG-based activated carbon can be well-described by the Freundlich model.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38714620

RESUMO

The safety of human health and agricultural production depends on the quality of farmland soil. Risk assessment of heavy metal pollution sources could effectively reduce the hazard of soil pollution from various sources. This study has identified and quantitatively analyzed pollution sources with geostatistical analysis and the APCS-MLR model. The potential ecological risk index was combined with the APCS-MLR model which has quantitatively calculated the source contribution. The results revealed that As, Cr, Cd, Pb, Zn, and Cu were enriched in soil. Geostatistical analysis and the APCS-MLR model have apportioned four pollution sources. The Mn and Ni were attributed to natural sources; As and Cr were from agricultural activities; Cu and Zn were originated from natural sources; Cd and Pb were derived from atmospheric deposition. Atmospheric deposition and agricultural activities were the largest contributors to ecological risk of heavy metals in soil, which accounted for 56.21% and 36.01% respectively. Atmospheric deposition and agricultural activities are classified as priority sources of pollution. The combination of source analysis receptor model and risk assessment is an effective method to quantify source contribution. This study has quantified the ecological risks of soil heavy metals from different sources, which will provide a reliable method for the identification of primary harmfulness sources of pollution for future studies.

11.
Heliyon ; 10(8): e29939, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699727

RESUMO

In the United States, coronavirus disease 2019 (COVID-19) cases have consistently been linked to the prevailing variant XBB.1.5 of SARS-CoV-2 since late 2022. A system has been developed for producing and infecting cells with a pseudovirus (PsV) of SARS-CoV-2 to investigate the infection in a Biosafety Level 2 (BSL-2) laboratory. This system utilizes a lentiviral vector carrying ZsGreen1 and Firefly luciferase (Fluc) dual reporter genes, facilitating the analysis of experimental results. In addition, we have created a panel of PsV variants that depict both previous and presently circulating mutations found in circulating SARS-CoV-2 strains. A series of PsVs includes the prototype SARS-CoV-2, Delta B.1.617.2, BA.5, XBB.1, and XBB.1.5. To facilitate the study of infections caused by different variants of SARS-CoV-2 PsV, we have developed a HEK-293T cell line expressing mCherry and human angiotensin converting enzyme 2 (ACE2). To validate whether different SARS-CoV-2 PsV variants can be used for neutralization assays, we employed serum from rats immunized with the PF-D-Trimer protein vaccine to investigate its inhibitory effect on the infectivity of various SARS-CoV-2 PsV variants. According to our observations, the XBB variant, particularly XBB.1.5, exhibits stronger immune evasion capabilities than the prototype SARS-CoV-2, Delta B.1.617.2, and BA.5 PsV variants. Hence, utilizing the neutralization test, this study has the capability to forecast the effectiveness in preventing future SARS-CoV-2 variants infections.

13.
Psychol Med ; : 1-8, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738283

RESUMO

BACKGROUND: Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear. METHODS: This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design. RESULTS: Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups. CONCLUSIONS: Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.

14.
Foods ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731688

RESUMO

Solid-state fermentation is widely used in traditional food production, but most of the complex processes involved were designed and are carried out without a scientific basis. Often, mathematical models can be established to describe mass and heat transfer with the assistance of chemical engineering tools. However, due to the complex nature of solid-state fermentation, mathematical models alone cannot explain the many dynamic changes that occur during these processes. For example, it is hard to identify the most important variables influencing product yield and quality fluctuations. Here, using solid-state fermentation of Chinese liquor as a case study, we established statistical models to correlate the final liquor yield with available industrial data, including the starting content of starch, water and acid; starting temperature; and substrate temperature profiles throughout the process. Models based on starting concentrations and temperature profiles gave unsatisfactory yield predictions. Although the most obvious factor is the starting month, ambient temperature is unlikely to be the direct driver of differences. A lactic-acid-inhibition model indicates that lactic acid from lactic acid bacteria is likely the reason for the reduction in yield between April and December. Further integrated study strategies are necessary to confirm the most crucial variables from both microbiological and engineering perspectives. Our findings can facilitate better understanding and improvement of complex solid-state fermentations.

15.
J Hazard Mater ; 471: 134404, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688217

RESUMO

The influence of organic carbon on the proliferation of antibiotic resistance genes (ARGs) in the soil has been widely documented. However, it is unclear how soil organic carbon (SOC) interacts with the evolution of antibiotic resistance in bacteria. Here, we examined the variations in ARGs abundance during SOC mineralization and explored the microbiological mechanisms and key metabolic pathways involved in their coevolution. The results showed that the SOC mineralization rate was closely correlated with ARGs abundance (p < 0.05). High organic carbon (OC) mineralization was conducive to the occurrence of multidrug resistance genes. For example, multidrug_transporter and mexB increased 2.26 and 7.83 times from the initial level. The competitor (stress) evolutionary strategy model revealed that higher OC inputs drive environmental microorganisms to evolve from stress tolerant to high resistance and strong adaptation. Meta-genomic and transcriptomic analyses revealed that the conversion process of pyruvate to acetyl-CoA to acetate was the critical metabolic pathway for the co-regulation of antibiotic resistance. Gene deletion validation trials have demonstrated that the key functional genes (ackA and pta) involved in this process can modulate the development of vancomycin and multidrug resistance. This outcome provides a preliminary framework for microbial mechanisms that target the co-regulation of microbial OC conversion and the evolution of antibiotic resistance.


Assuntos
Carbono , Microbiologia do Solo , Solo , Carbono/metabolismo , Carbono/química , Solo/química , Bactérias/metabolismo , Bactérias/genética , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
16.
J Leukoc Biol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652703

RESUMO

Primary Biliary Cholangitis (PBC) and Autoimmune Hepatitis (AIH) are autoimmune diseases that target hepatocytes and bile duct cells, respectively. Despite their shared autoimmune nature, the differences in immunologic characteristics between them remain largely unexplored. This study seeks to elucidate the unique immunological profiles of PBC and AIH, and to identify key differences. We comprehensively analyzed various T-cell subsets and their receptor expression in a cohort of 45 patients, including 27 PBC and 18 AIH cases. Both diseases exhibited T cell exhaustion and senescence along with a surge in inflammatory cytokines. Significantly increased CD38+HLA-DR+CD8+T cell populations were observed in both diseases. AIH was characterized by an upregulation of CD8+TEMRA, CD4+TEM, and CD4+TEMRA cells, and a concurrent reduction in Treg cells. In contrast, PBC displayed a pronounced presence of Tfh cells and a contraction of CD4-CD8-T cell populations. Correlation analysis revealed that NKP46+NK frequency was closely tied to ALT and AST levels, and TIGIT expression on T cells was associated with GLB level in AIH. In PBC, there is a significant correlation between Tfh cells and ALP levels. Moreover, the identified immune landscapes in both diseases strongly related to disease severity. Through logistic regression analysis, γδ T, TIGIT+Vδ2 T, and Tfh1 cell frequencies emerged as distinct markers capable of differentiating PBC from AIH. In conclusion, our analyses reveal that PBC and AIH share similarities and differences regarding to immune profiles. And γδ T, TIGIT+Vδ2 T, and Tfh1 cell frequencies are potential noninvasive immunological markers that can differentiate PBC from AIH.

17.
J Immunother Cancer ; 12(4)2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631712

RESUMO

BACKGROUND: Approximately two-thirds of patients with relapsed or refractory large B-cell lymphoma (R/R LBCL) do not respond to or relapse after anti-CD19 chimeric antigen receptor T (CAR T)-cell therapy, leading to poor outcomes. Previous studies have suggested that intensified lymphodepletion and hematological stem cell infusion can promote adoptively transferred T-cell expansion, enhancing antitumor effects. Therefore, we conducted a phase I/II clinical trial in which CNCT19 (an anti-CD19 CAR T-cell) was administered after myeloablative high-dose chemotherapy and autologous stem cell transplantation (HDT/ASCT) in patients with R/R LBCL. METHODS: Transplant-eligible patients with LBCL who were refractory to first-line immunochemotherapy or experiencing R/R status after salvage chemotherapy were enrolled. The study aimed to evaluate the safety and efficacy of this combinational therapy. Additionally, frozen peripheral blood mononuclear cell samples from this trial and CNCT19 monotherapy studies for R/R LBCL were used to evaluate the impact of the combination therapy on the in vivo behavior of CNCT19 cells. RESULTS: A total of 25 patients with R/R LBCL were enrolled in this study. The overall response and complete response rates were 92.0% and 72.0%, respectively. The 2-year progression-free survival rate was 62.3%, and the overall survival was 68.5% after a median follow-up of 27.0 months. No unexpected toxicities were observed. All cases of cytokine release syndrome were of low grade. Two cases (8%) experienced grade 3 or higher CAR T-cell-related encephalopathy syndrome. The comparison of CNCT19 in vivo behavior showed that patients in the combinational therapy group exhibited enhanced in vivo expansion of CNCT19 cells and reduced long-term exhaustion formation, as opposed to those receiving CNCT19 monotherapy. CONCLUSIONS: The combinational therapy of HDT/ASCT and CNCT19 demonstrates impressive efficacy, improved CNCT19 behavior, and a favorable safety profile. TRIAL REGISTRATION NUMBERS: ChiCTR1900025419 and NCT04690192.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma Difuso de Grandes Células B , Humanos , Leucócitos Mononucleares , Recidiva Local de Neoplasia/terapia , Transplante Autólogo , Linfoma Difuso de Grandes Células B/terapia , Resultado do Tratamento , Linfócitos T
18.
Int J Med Sci ; 21(5): 914-920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617012

RESUMO

Background: We aimed to compare the prevention of hypoxemia using High-flow nasal oxygen (HFNO) or regular nasal tubing (CNC) in elderly patients undergoing gastroscopy with sedation. Methods: This study was a prospective, randomized, controlled trial conducted at a single center. We included elective patients aged 65 and above who were undergoing gastroscopy with sedation. In the intervention group (HFNO), we set the oxygen flow rate to 60 liters per minute with an oxygen fraction (FiO2) of 0.6, while in the control group (CNC), it was 6 liters per minute. The primary outcome was the occurrence of hypoxemia (defined as Spo2 < 90%). Results: A total of 125 participants were enrolled (HFNO group: n = 63; CNC group: n = 62). The occurrence of hypoxemia was found to be significantly lower in the HFNO group compared to the CNC group (3.2% vs. 22.6%, p = 0.001). Additionally, a significantly shorter duration of low oxygen levels was observed in the HFNO group [0.0 seconds (0.0-13.0)] compared to the CNC group [0.0 seconds (0.0-124.0), p<0.001]. Moreover, a higher minimum Spo2 value was achieved in the HFNO group [99.0% (98.0-100.0) vs. 96.5% (91.0-99.0), p < 0.001], and a shorter recovery time was recorded [0.5 minutes (0.0-0.5) vs. 0.5 minutes (0.0-1.0), p = 0.016] in comparison to the CNC group. There were no differences in terms of comfort level [0 (0-4) vs. 0 (0-5), p = 0.268] between the two groups. Conclusions: The HFNO system was determined to be a safe and highly effective method for oxygen delivery, leading to a reduction in the occurrence of hypoxemia in elderly patients undergoing gastroscopy with sedation. It is recommended that HFNO be considered as the standard approach for management in this population.


Assuntos
Gastroscopia , Oxigênio , Idoso , Humanos , Gastroscopia/efeitos adversos , Cânula , Estudos Prospectivos , Hipóxia/etiologia , Hipóxia/prevenção & controle
19.
Ecotoxicol Environ Saf ; 276: 116277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604061

RESUMO

Ochratoxin A (OTA) is a common fungal toxin frequently detected in food and human plasma samples. Currently, the physiologically based toxicokinetic (PBTK) model plays an active role in dose translation and can improve and enhance the risk assessment of toxins. In this study, the PBTK model of OTA in rats and humans was established based on knowledge of OTA-specific absorption, distribution, metabolism, and excretion (ADME) in order to better explain the disposition of OTA in humans and the discrepancies with other species. The models were calibrated and optimized using the available kinetic and toxicokinetic (TK) data, and independent test datasets were used for model evaluation. Subsequently, sensitivity analyses and population simulations were performed to characterize the extent to which variations in physiological and specific chemical parameters affected the model output. Finally, the constructed models were used for dose extrapolation of OTA, including the rat-to-human dose adjustment factor (DAF) and the human exposure conversion factor (ECF). The results showed that the unbound fraction (Fup) of OTA in plasma of rat and human was 0.02-0.04% and 0.13-4.21%, respectively. In vitro experiments, the maximum enzyme velocity (Vmax) and Michaelis-Menten constant (Km) of OTA in rat and human liver microsomes were 3.86 and 78.17 µg/g min-1, 0.46 and 4.108 µg/mL, respectively. The predicted results of the model were in good agreement with the observed data, and the models in rats and humans were verified. The PBTK model derived a DAF of 0.1081 between rats and humans, whereas the ECF was 2.03. The established PBTK model can be used to estimate short- or long-term OTA exposure levels in rats and humans, with the capacity for dose translation of OTA to provide the underlying data for risk assessment of OTA.


Assuntos
Modelos Biológicos , Ocratoxinas , Toxicocinética , Ocratoxinas/toxicidade , Ocratoxinas/farmacocinética , Animais , Ratos , Humanos , Medição de Risco , Masculino
20.
Ecotoxicol Environ Saf ; 276: 116321, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608382

RESUMO

Manure is one of the main sources of heavy metal (HM) pollution on farmlands. It has become the focus of global ecological research because of its potential threat to human health and the sustainability of food systems. Soil pH and organic matter are improved by manure and play pivotal roles in determining soil HM behavior. Geochemical modeling has been widely used to assess and predict the behavior of soil HMs; however, there remains a research gap in manure applications. In this study, a geochemical model (LeachXS) coupled with a pH-dependent leaching test with continuously simulations over a broad pH range was used to determine the effects and pollution risks of pig or cattle manure separate application on soil HMs distribution. Both pig and cattle manure applications led to soil pH reduction in alkaline soils and increased organic matter content. Pig manure application resulted in a potential 90.5-156.0 % increase in soil HM content. Cattle manure did not cause significant HM contamination. The leaching trend of soil HMs across treatments exhibited a V-shaped change, with the lowest concentration at pH = 7, gradually increasing toward strong acids and bases. The dissolved organic matter-bound HM content directly increased the HM availability, especially for Cu (up to 8.4 %) after pig manure application. However, more HMs (Cr, Cu, Zn, Ni) were in the particulate organic matter-bound state than in other solid phases (e.g., Fe-Al(hydr) oxides, clay minerals), which inhibited the HMs leaching by more than 19.3 % after cattle manure application. Despite these variations, high HM concentrations introduced by pig manure raised the soil contamination risk, potentially exceeding 40 times at pH ±1. When manure is returned to the field, reducing its HM content and mitigating possible pollution is necessary to realize the healthy and sustainable development of circular agriculture.


Assuntos
Esterco , Metais Pesados , Poluentes do Solo , Solo , Esterco/análise , Poluentes do Solo/análise , Metais Pesados/análise , Animais , Bovinos , Solo/química , Suínos , Concentração de Íons de Hidrogênio , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA