Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Infect Med (Beijing) ; 3(2): 100109, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38846345

RESUMO

Fusobacterium vincentii brain abscesses are relatively rare. Here, we report our treatment of an anaerobic brain abscess caused by a mixed infection of Parvimonas micra, Streptococcus constellatus, Fusobacterium vincentii, and Bacteroides heparinolyticus diagnosed by metagenomic next-generation sequencing (mNGS). This is the first reported case of Fusobacterium vincentii in a brain abscess. This case highlights the possibility that oral anaerobic microbes can cause a brain abscess and demonstrates that mNGS has the potential to be deployed to provide rapid infection diagnosis and rationalize antimicrobial therapy for brain abscesses.

2.
Heliyon ; 10(11): e32006, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867976

RESUMO

Establishing ecological management zones based on the supply-demand relationship of ecosystem services (ESs) is essential for fostering sustainable development within social-ecological systems and improving human well-being. In this study, the spatial pattern between supply and demand in five ESs (grain production (GP), carbon sequestration (CS), soil conservation (SC), water conservation (WC), and habitat quality (HQ)) is analyzed using the ESs supply-demand ratio (ESDR) method, the spatial autocorrelation method, and the coupled coordination degree model. Zoning is performed according to the differences in their spatial combinations, and differential zoning management policies are proposed. The following results were obtained: (1) In terms of the ESDR, except for a slight increase in GP surplus from 2010 to 2020, there is a decline in the surplus of the other four ESs. (2) CS, WC, and HQ are dominated by cluster types LH and HL. GP and SC are dominated by cluster types HH and LL. The average value of the coupling coordination degree (CCD) of comprehensive ESs supply and demand show five types: moderate disharmony, slight disharmony, near disharmony, basic coordination, and slight coordination. (3) Based on the multiple spatial heterogeneity of ESs supply and demand, differentiated ecological management strategies are proposed at the grid scale. Overall, this study discover the spatial pattern of mismatch between the supply and demand of ecosystem services (ESs) in mountainous urban areas. This contribution enhances the discourse surrounding sustainable development theory and advances research on the coupling of social-ecological systems. Furthermore, it offers valuable insights for the formulation of sustainable ecological management policies tailored to mountainous urban settings.

3.
Cureus ; 16(4): e58854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38784318

RESUMO

Primary ciliary dyskinesia (PCD) is a rare congenital disorder caused by pathogenic variants of genes related to cilia. Here, we report two Japanese pediatric patients with PCD caused by pathogenic compound heterozygous variants in the cyclin O (CCNO) gene (Case 1, NM_021147.4:c.[262C>T];[781delC], p.[Gln88Ter];[Leu261fs]; Case 2, c.[262C>T];[c.248_252dupTGCCC], p.[Gln88Ter];[Gly85fs]). The clinical symptoms of the patients were varied. Neither of the patients had situs inversus. Transmission electron microscopy of the respiratory cilia from the nasal mucosa in Case 1 showed a remarkable reduction of cilia and the few residual cilia had central pair defects and microtubular disorganization.

4.
Heliyon ; 10(9): e30234, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726152

RESUMO

Battery recycling is viewed in China as an important means of achieving primary sustainability goals and greater economic and environmental development. With the notice of high battery recycling intentions through relevant investigations, this study examine the influencing factors of these recycling behaviors of e-bikes citizens by incorporating the place identity and environmental concern into the Extended Normative Activation Model (NAM), which fill the research gap on how place identity and environmental concern affect the batteries recycling behavior. This study proposes that the consequence awareness, personal norms, and attitudes have mediating effect on place identity to the recycling behavior, and the environmental concern has moderating effect on consequence awareness, personal norms, and attitudes to the recycling behavior, respectively. Based on 1068 valid surveys, hypotheses were examined using partial least square structural equation modeling (PLS-SEM). The results show that personal norms and awareness of consequences positively impact e-bike users' intentions to recycle waste batteries, and environmental concerns have no moderating effect on attitude, recycling intention, personal norms, and recycling intention. Theoretical and practical implications are discussed at last.

5.
J Virol ; 98(6): e0000524, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38717113

RESUMO

TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE: TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Transativadores , Fatores de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Replicação Viral , Humanos , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Transativadores/metabolismo , Transativadores/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteólise , Latência Viral , Apoptose , Ativação Viral , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular , Linfoma de Efusão Primária/virologia , Linfoma de Efusão Primária/metabolismo
6.
Huan Jing Ke Xue ; 45(5): 2548-2557, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629520

RESUMO

A total of 18 metal elements in ambient PM2.5 in Zhengzhou were continuously determined using an online heavy metal observation instrument in January and April, 2021, and the changes in element concentrations were analyzed. Metal elements were traced via enrichment factors, positive matrix factorization (PMF), and a characteristic radar chart. The US EPA health risk assessment model was used to assess the health risks of heavy metals, and the backward trajectory method and the concentration-weighted trajectory (CWT) method were used to evaluate the potential source regions of health risks. The results showed that the element concentrations were higher in spring, and the sum of Fe, Ca, Si, and Al concentrations accounted for 89.8% and 87.5% of the total element concentrations in winter and spring, respectively. Cd was enriched significantly, which was related to human activities. The concentrations of Pb, Se, Zn, Ni, Sb, and K in winter and Cr, Ni, Fe, Mn, V, Ba, Ca, K, Si, and Al in spring increased with the increasing pollution level. The results of PMF and the characteristic radar chart showed that the main sources of metal elements in winter and spring were industry, crust, motor vehicles, and mixed combustion, with industry and mixed combustion pollution occurring more often in winter and crust pollution occurring more often in spring. Significant non-carcinogenic risks existed in both winter and spring with more severe health risks in winter, and Mn caused significant non-carcinogenic risks. The health risks in winter were mainly influenced by Zhengzhou and surrounding cities and long-distance transport in the northwest, and the health risks in spring were mainly influenced by Zhengzhou and surrounding cities.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , China
7.
Adv Sci (Weinh) ; : e2400206, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639442

RESUMO

Ulcerative colitis (UC) is a complicated and recurrent intestinal disease. Currently available drugs for UC treatment are scarce, therefore, novel therapeutic drugs for the UC are urgently to be developed. Gingerenone A (GA) is a phenolic compound known for its anti-inflammatory effect, but its effect on UC remains unknown. Here, it is shown that GA protects mice against UC, which is closely associated with inhibiting intestinal mucosal inflammation and enhancing intestinal barrier integrity in vivo and in vitro. Of note, RNA sequencing analysis demonstrates an evident correlation with IL-17 signaling pathway after GA treatment, and this effect is further corroborated by Western blot. Mechanistically, GA directly interacts with IL-17RA protein through pull-down, surface plasmon resonance analysis and molecular dynamics simulation. Importantly, lentivirus-mediated IL-17RA/Act1 knock-down or GA co-treatment with brodalumab/ixekizumab significantly impairs the protective effects of GA against DSS-induced inflammation and barrier dysfunction, suggesting a critical role of IL-17RA signaling for GA-mediated protection against UC. Overall, these results indicate that GA is an effective agent against UC mainly through the direct binding of IL-17RA to inhibit inflammatory signaling activation.

8.
Infection ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647828

RESUMO

BACKGROUND: Sepsis is a recognized global health challenge that places a considerable disease burden on countries. Although there has been some progress in the study of sepsis, the mortality rate of sepsis remains high. The relationship between serum osmolality and the prognosis of patients with sepsis is unclear. METHOD: Patients with sepsis who met the criteria in the Medical Information Mart for Intensive Care IV database were included in the study. Hazard ratios (HRs) and 95% confidence intervals (CIs) were determined using multivariable Cox regression. The relationship between serum osmolality and the 28-day mortality risk in patients with sepsis was investigated using curve fitting, and inflection points were calculated. RESULTS: A total of 13,219 patients with sepsis were enrolled in the study; the mean age was 65.1 years, 56.9 % were male, and the 28-day mortality rate was 18.8 %. After adjusting for covariates, the risk of 28-day mortality was elevated by 99% (HR 1.99, 95%CI 1.74-2.28) in the highest quintile of serum osmolality (Q5 >303.21) and by 59% (HR 1.59, 95%CI 1.39-1.83) in the lowest quintile (Q1 ≤285.80), as compared to the reference quintile (Q3 291.38-296.29). The results of the curve fitting showed a U-shaped relationship between serum osmolality and the risk of 28-day mortality, with an inflection point of 286.9 mmol/L. CONCLUSION: There is a U-shaped relationship between serum osmolality and the 28-day mortality risk in patients with sepsis. Higher or lower serum osmolality is associated with an increased risk of mortality in patients with sepsis. Patients with sepsis have a lower risk of mortality when their osmolality is 285.80-296.29 mmol/L.

9.
Microbiol Spectr ; 12(4): e0393223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38466099

RESUMO

Mosquitoes carry a large number of known and unknown viruses, some of which could cause serious diseases in humans or animals. Metagenomic sequencing for mosquito viromes is crucial for understanding the evolutionary history of viruses and preventing emerging mosquito-borne diseases. We collected 1,598 mosquitoes belonging to four species from five counties in Shandong Province, China in 2021. They were grouped by species and sampling locations and subjected to metagenomic next-generation sequencing for the analysis of the viromes. A total of 233,317,352 sequencing reads were classified into 30 viral families and an unclassified group. Comparative analysis showed that mosquitoes in Shandong Province generally possessed host-specific virome. We detected mosquito-borne viruses including Japanese encephalitis virus, Getah virus, and Kadipiro virus in Culex tritaeniorhynchus and Anopheles sinensis samples. Phylogenetic analysis showed that these pathogenic viruses may have existed in mosquitoes in Shandong Province for a long time. Meanwhile, we identified 22 novel viruses belonging to seven families and the genus Negevirus. Our study comprehensively described the viromes of several common mosquito species in Shandong Province, China, and demonstrated the major role of host species in shaping mosquito viromes. Furthermore, the metagenomic data provided valuable epidemiological information on multiple mosquito-borne viruses, highlighting the potential risk of infection transmission. IMPORTANCE: Mosquitoes are known as the source of various pathogens for humans and animals. Culex tritaeniorhynchus, Armigeres subalbatus, and Anopheles sinensis have been found to transmit the Getah virus, which has recently caused increasing infections in China. Cx. tritaeniorhynchus and Culex pipiens are the main vectors of Japanese encephalitis virus and have caused epidemics of Japanese encephalitis in China in past decades. These mosquitoes are widely present in Shandong Province, China, leading to a great threat to public health and the breeding industry. This study provided a comprehensive insight into the viromes of several common mosquito species in Shandong Province, China. The metagenomic sequencing data revealed the risks of multiple pathogenic mosquito-borne viruses, including Japanese encephalitis virus, Getah virus, and Kadipiro virus, which are of great importance for preventing emerging viral epidemics.


Assuntos
Anopheles , Culex , Vírus da Encefalite Japonesa (Espécie) , Vírus , Humanos , Animais , Filogenia , Mosquitos Vetores , Vírus/genética
10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 332-336, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38538366

RESUMO

Sepsis is a life-threatening organ dysfunction due to dysregulation of the body's response to infection. The immunosuppressive phase of sepsis is also an important cause of high morbidity and mortality in patients with advanced sepsis. Myeloid-derived suppressor cell (MDSC), as a heterogeneous population of Gr1+CD11b+ immature cells, play a pivotal role in the immune process of advanced sepsis together with programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) with immunosuppressive properties. This review summarized the research progress of PD-1/PD-L1 pathway-mediated mechanism of MDSC in septic immunosuppression in recent years. The mechanism of action of PD-1/PD-L1 pathway in the immunosuppressive stage, the effects of PD-1/PD-L1 pathway on the "dual-signaling" model of MDSC through the signaling pathway and cytokines, as well as the time course of PD-1/PD-L1 pathway mediation in sepsis were described.


Assuntos
Células Supressoras Mieloides , Sepse , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Ligantes , Sepse/metabolismo , Terapia de Imunossupressão
11.
Heliyon ; 10(5): e26810, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444478

RESUMO

Background: Epstein-Barr virus (EBV) is widely infected in humans and causes various diseases. Among them, microRNAs of EBV play a key role in the progression of EBV-associated febrile diseases. There're few specific indicators for rapid differential diagnosis of various febrile diseases associated with EBV, and the lack of more reliable screening methods with high diagnostic utility has led to spaces for improvement in the accurate diagnosis and efficient treatment of relevant patients, making EBV infection a complicated clinical problem. With recent advances in plasma microRNA testing, the apparent presence of EBV microRNAs in plasma can help screen for EBV infection. The gene networks targeted by these microRNAs can also indicate potential biomarkers of EBV-associated febrile diseases. This study aimed to identify some novel miRNAs as potential biomarkers for early diagnosis of respectively EBV-associated febrile diseases. Materials and methods: A total of 110 participants were recruited for this task. First, we performed high-throughput sequencing and preliminary PCR validation of differentially expressed miRNAs in 15 participants with EBV-associated fever (divided into common EBV carriers), infectious mononucleosis (IM) and chronic active EBV infection (CAEBV), EBV-associated Hemophagocytic Lymphohistiocytosis group (EBV-HLH), and 3 healthy individuals. After a comprehensive analysis, 10 miRNAs with abnormal expression were screened, and then qRT-PCR was performed in the rest of 95 participants to detect the validation of miRNAs expression in plasma samples. Thereafter, we further investigated their potential for clinical application in EBV-related febrile diseases by using a combination of Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and Protein-protein interaction network analysis. Results: Through identification and detailed analysis of the obtained data, we found significant differences in the expression of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p in blood samples from patients with different EBV-related febrile diseases. We found that the expression levels of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p in plasma are indicative of determining different disease types of EBV-related febrile diseases, while EBV-miR-BART22 and EBV-miR-BART2-3p may be potential therapeutic targets. Conclusion: The expression levels of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p suggest that they may be used as transcriptional features for early differential diagnosis of EBV-related febrile diseases, and EBV-miR-BART22 and EBV-miR-BART2-3p may be potential therapeutic targets.

12.
J Phys Chem Lett ; 15(9): 2624-2631, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38420912

RESUMO

As a result of the non-directionality of ionic bonds, oppositely charged ions always assemble into closely packed clusters or crystals rather than linear structured ionic species. Here, we generated a series of linear calcium carbonate chains, (Ca2+CO32-)n, with an orientated directionality of the ionic interactions. The formation of these ionic chains with long-range ordered ionic interactions was originally induced by the dipole orientation of the ions and subsequently preserved by capping agents. According to the appropriately established folding-capping model, rational control of the capping effect can regulate the length of the (Ca2+CO32-)n chain within 100 nm, corresponding to n ≤ 250. Our discovery overturns the current understanding of ionic bonding in chemistry and opens a way to control the assembly of inorganic ions at molecular scale, pushing forward a fusion of molecular compounds and ionic compounds that share similar topological control.

13.
Nanomicro Lett ; 16(1): 114, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353764

RESUMO

Quasi-solid electrolytes (QSEs) based on nanoporous materials are promising candidates to construct high-performance Li-metal batteries (LMBs). However, simultaneously boosting the ionic conductivity (σ) and lithium-ion transference number (t+) of liquid electrolyte confined in porous matrix remains challenging. Herein, we report a novel Janus MOFLi/MSLi QSEs with asymmetric porous structure to inherit the benefits of both mesoporous and microporous hosts. This Janus QSE composed of mesoporous silica and microporous MOF exhibits a neat Li+ conductivity of 1.5 × 10-4 S cm-1 with t+ of 0.71. A partially de-solvated structure and preference distribution of Li+ near the Lewis base O atoms were depicted by MD simulations. Meanwhile, the nanoporous structure enabled efficient ion flux regulation, promoting the homogenous deposition of Li+. When incorporated in Li||Cu cells, the MOFLi/MSLi QSEs demonstrated a high Coulombic efficiency of 98.1%, surpassing that of liquid electrolytes (96.3%). Additionally, NCM 622||Li batteries equipped with MOFLi/MSLi QSEs exhibited promising rate performance and could operate stably for over 200 cycles at 1 C. These results highlight the potential of Janus MOFLi/MSLi QSEs as promising candidates for next-generation LMBs.

14.
Nature ; 626(7998): 313-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326591

RESUMO

Calcium-oxygen (Ca-O2) batteries can theoretically afford high capacity by the reduction of O2 to calcium oxide compounds (CaOx) at low cost1-5. Yet, a rechargeable Ca-O2 battery that operates at room temperature has not been achieved because the CaOx/O2 chemistry typically involves inert discharge products and few electrolytes can accommodate both a highly reductive Ca metal anode and O2. Here we report a Ca-O2 battery that is rechargeable for 700 cycles at room temperature. Our battery relies on a highly reversible two-electron redox to form chemically reactive calcium peroxide (CaO2) as the discharge product. Using a durable ionic liquid-based electrolyte, this two-electron reaction is enabled by the facilitated Ca plating-stripping in the Ca metal anode at room temperature and improved CaO2/O2 redox in the air cathode. We show the proposed Ca-O2 battery is stable in air and can be made into flexible fibres that are weaved into textile batteries for next-generation wearable systems.

15.
Huan Jing Ke Xue ; 45(1): 36-47, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216456

RESUMO

Nitrate (NO3-), sulfate (SO42-), and ammonium (NH4+) are important components of PM2.5, and studying their characteristics and influencing factors is essential for the continuous improvement of air quality. A series of online instruments were used to analyze the chemical components of PM2.5 in Zhengzhou in the summer of 2020. The results showed that the average ρ(PM2.5) was (28 ±13) µg·m-3, showing a daily variation characteristic of high at night and low during the day. The main concentrations of NO3-, SO42-, and NH4+ were (7.8 ±6.7), (7.2 ±3.7), and (5.5 ±3.1) µg·m-3, accounting for 22%, 21%, and 16% in PM2.5, respectively. The proportions of NO3- (27%) and SO42- (23%) in PM2.5, respectively, increased with the increase in PM2.5 and O3 concentration. In addition, the proportions of NO3- and NH4+ increased under low wind speed, high humidity, low temperature, and rainfall conditions. Moreover, the proportion of NO3- showed a daily variation characteristic of high at night and low during the day, whereas the opposite was true for SO42-. The gas-particle partitioning process of NH4NO3 was the main factor affecting the concentrations of NO3- and NH4+ in PM2.5. Low temperature, high humidity, and high aerosol water content concentrations favored the partitioning of HNO3 and NH3 to the particulate phase. High pH also favored the partitioning of gas-phase HNO3 to NO3-; however, it was not conducive to the partition of NH3 to NH4+. These trends partially explained the increase in the concentration and proportion of NO3- in PM2.5 under different scenarios.

16.
J Food Sci ; 89(2): 834-850, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38167751

RESUMO

Lactic acid fermentation is an effective method for improving the quality of black chokeberry. This study aimed to investigate the influence of lactic acid bacteria on the phenolic profile, antioxidant activities, and volatiles of black chokeberry juice. Initially, 107  cfu/mL of Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Lacticaseibacillus rhamnosus were inoculated into pasteurized black chokeberry juice and fermented for 48 h at 37°C. All these strains enhanced the total phenolic and total flavonoid contents, with La. acidophilus showing the highest total phenolic (1683.64 mg/L) and total flavonoid (659.27 mg/L) contents. Phenolic acids, flavonoids, and anthocyanins were identified using ultrahigh-performance liquid chromatography-tandem mass spectrometry. The prevalent phenolic acid, flavonoid, and anthocyanin in the lactic-acid-fermented black chokeberry juice were cinnamic acid, rutin, and cyanidin-3-O-rutinoside, respectively. Furthermore, following fermentation, the DPPH and ABTS scavenging capacity, as well as the reducing power capacity, increased from 59.98% to 92.70%, 83.06% to 94.95%, and 1.24 to 1.82, respectively. Pearson's correlation analysis revealed that the transformation of phenolic acids, flavonoids, and anthocyanins probably contributed to enhancing antioxidant activities and color conversation in black chokeberry juice. A total of 40 volatiles were detected in the fermented black chokeberry juice by gas chromatography-ion mobility spectrometry. The off-flavor odors, such as 1-penten-3-one and propanal in the black chokeberry juice, were weakened after fermentation. The content of 2-pentanone significantly increased in all fermented juice, imparting an ethereal flavor. Hence, lactic acid fermentation can effectively enhance black chokeberry products' flavor and prebiotic value, offering valuable insights into their production. PRACTICAL APPLICATION: The application of lactic acid bacteria in black chokeberry juice not only enhances its flavor but also improves its health benefits. This study has expanded the range of black chokeberry products and offers a new perspective for the development of the black chokeberry industry.


Assuntos
Lactobacillales , Photinia , Antioxidantes/química , Antocianinas , Ácido Láctico/análise , Photinia/química , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/análise , Flavonoides , Lactobacillus acidophilus/metabolismo , Lactobacillales/metabolismo
17.
Oncol Lett ; 27(2): 70, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38192676

RESUMO

Gastric cancer (GC) is the fifth most common cause of cancer-associated deaths; however, its treatment options are limited. Despite clinical improvements, chemotherapy resistance and metastasis are major challenges in improving the prognosis and quality of life of patients with GC. Therefore, effective prognostic biomarkers and targets associated with immunological interventions need to be identified. Solute carrier family 2 member 2 (SLC2A2) may serve a role in tumor development and invasion. The present study aimed to evaluate SLC2A2 as a prospective prognostic marker and chemotherapeutic target for GC. SLC2A2 expression in several types of cancer and GC was analyzed using online databases, and the effects of SLC2A2 expression on survival prognosis in GC were investigated. Clinicopathological parameters were examined to explore the association between SLC2A2 expression and overall survival (OS). Associations between SLC2A2 expression and immune infiltration, immune checkpoints and IC50 were estimated using quantification of the tumor immune contexture from human RNA-seq data, the Tumor Immune Estimation Resource 2.0 database and the Genomics of Drug Sensitivity in Cancer database. Differential SLC2A2 expression and the predictive value were validated using the Human Protein Atlas, Gene Expression Omnibus, immunohistochemistry and reverse transcription-quantitative PCR. SLC2A2 expression was downregulated in most types of tumor but upregulated in GC. Functional enrichment analysis revealed an association between SLC2A2 expression and lipid metabolism and the tumor immune microenvironment. According to Gene Ontology term functional enrichment analysis, SLC2A2-related differentially expressed genes were enriched predominantly in 'chylomicron assembly', 'plasma lipoprotein particle assembly', 'high-density lipoprotein particle', 'chylomicron', 'triglyceride-rich plasma lipoprotein particle', 'very-low-density lipoprotein particle'. 'intermembrane lipid transfer activity', 'lipoprotein particle receptor binding', 'cholesterol transporter activity' and 'intermembrane cholesterol transfer activity'. In addition, 'cholesterol metabolism', and 'fat digestion and absorption' were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Patients with GC with high SLC2A2 expression had higher levels of neutrophil and M2 macrophage infiltration and a significant inverse correlation was observed between SLC2A2 expression and MYC targets, tumor mutation burden, microsatellite instability and immune checkpoints. Furthermore, patients with high SLC2A2 expression had worse prognosis, including OS, disease-specific survival and progression-free interval. Multivariate regression analysis demonstrated that SLC2A2 could independently prognosticate GC and the nomogram model showed favorable performance for survival prediction. SLC2A2 may be a prospective prognostic marker for GC. The prediction model may improve the prognosis of patients with GC in clinical practice, and SLC2A2 may serve as a novel therapeutic target to provide immunotherapy plans for GC.

18.
J Vis Exp ; (203)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38284553

RESUMO

Knee osteoarthritis (KOA), a common degenerative joint disorder, is characterized by chronic pain and disability, which can progress to irreparable structural damage of the joint. Investigations into the link between articular cartilage, muscles, synovium, and other tissues surrounding the knee joint in KOA are of great importance. Currently, managing KOA includes lifestyle modifications, exercise, medication, and surgical interventions; however, the elucidation of the intricate mechanisms underlying KOA-related pain is still lacking. Consequently, KOA pain remains a key clinical challenge and a therapeutic priority. Tuina has been found to have a regulatory effect on the motor, immune, and endocrine systems, prompting the exploration of whether Tuina could alleviate KOA symptoms, caused by the upregulation of inflammatory factors, and further, if the inflammatory factors in skeletal muscle can augment the progression of KOA. We randomized 32 male Sprague Dawley (SD) rats (180-220 g) into four groups of eight animals each: antiPD-L1+Tuina (group A), model (group B), Tuina (group C), and sham surgery (group D). For groups A, B, and C, we injected 25 µL of sodium monoiodoacetate (MIA) solution (4 mg MIA diluted in 25 µL of sterile saline solution) into the right knee joint cavity, and for group D, the same amount of sterile physiological saline was injected. All the groups were evaluated using the least to most stressful tests (paw mechanical withdrawal threshold, paw withdrawal thermal latency, swelling of the right knee joint, Lequesne MG score, skin temperature) before injection and 2, 9, and 16 days after injection.


Assuntos
Osteoartrite do Joelho , Ratos , Masculino , Animais , Osteoartrite do Joelho/induzido quimicamente , Osteoartrite do Joelho/terapia , Ratos Sprague-Dawley , Sódio/efeitos adversos , Articulação do Joelho/cirurgia , Dor/etiologia , Injeções Intra-Articulares/efeitos adversos
19.
Int Immunopharmacol ; 128: 111488, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185034

RESUMO

BACKGROUND: Cat-derived allergens are considered as one of the most common causes of allergic diseases worldwide. Fel d 1 is a major cat allergen and plays an important role in immunoglobulin E (IgE)-reaction diagnosis. However, the two separate chains of Fel d 1 exhibited lower IgE-reactivity than its complete molecule of an assembled form, which makes it difficult to efficiently prepare and limits the application of Fel d 1 in molecular diagnosis of cat allergy. METHODS: We first applied artificial intelligence (AI) based tool AlphaFold2 to build the 3-dimensional structures of Fel d 1 with different connection modes between two chains, which were evaluated by ERRAT program and were expressed in Escherichia coli. We then calculated the expression ratios of soluble form/inclusion bodies form of optimized Fel d 1. The Circular Dichroism (CD), High Performance Liquid Chromatography-Size Exclusion Chromatography (HPLC-SEC) and reducing/non-reducing SDS-PAGE were performed to characterize the folding status and dimerization of the optimized fusion Fel d 1. The improvement of specific-IgE reactivity to optimized fusion Fel d 1 was investigated by enzyme linked immunosorbent assay (ELISA). RESULTS: Among several linkers, 2 × GGGGS got the highest scores, with an overall quality factor of 100. The error value of the residues around the junction of 2 × GGGGS was lower than others. It exhibited highest proportion of soluble protein than other Fel d 1 constructs with ERRAT (GGGGS, KK as well as direct fusion Fel d 1). The results of CD and HPLC-SEC showed the consistent folding and dimerization of two fused subunits between the optimized fusion Fel d 1 and previously well-defined direct fusion Fel d 1. The overall IgE-binding absorbance of optimized fusion Fel d 1 tested by ELISA was improved compared with that of the direct fusion Fel d 1. CONCLUSION: We firstly provided an AI-design strategy to optimize the Fel d 1, which could spontaneously fold into its native-like structure without additional refolding process or eukaryotic folding factors. The improved IgE-binding activity and simplified preparation method could greatly facilitate it to be a robust allergen material for molecular diagnosis of cat allergy.


Assuntos
Hipersensibilidade , Imunoglobulina E , Humanos , Imunoglobulina E/metabolismo , Sequência de Aminoácidos , Inteligência Artificial , Alérgenos/química
20.
Int J Pharm ; 650: 123695, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38081560

RESUMO

Polyethylene glycol (PEG) plays important roles in stabilizing and lengthening circulation time of lipid nanoparticle (LNP) vaccines. Nowadays various levels of PEG antibodies have been detected in human blood, but the impact and mechanism of PEG antibodies on the in vivo performance of LNP vaccines has not been clarified thoroughly. By illustrating the distribution characteristics of PEG antibodies in human, the present study focused on the influence of PEG antibodies on the safety and efficacy of LNP-mRNA vaccine against COVID-19 in animal models. It was found that PEG antibodies led to shortened blood circulation duration, elevated accumulation and mRNA expression in liver and spleen, enhanced expression in macrophage and dendritic cells, while without affecting the production of anti-Spike protein antibodies of COVID-19 LNP vaccine. Noteworthily, PEG antibodies binding on the LNP vaccine increased probability of complement activation in animal as well as in human serum and led to lethal side effect in large dosage via intravenous injection of mice. Our data suggested that PEG antibodies in human was a risky factor of LNP-based vaccines for biosafety concerns but not efficacy.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Humanos , Animais , Camundongos , Polietilenoglicóis , Vacinas de mRNA , Vacinas contra COVID-19 , Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA