Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1368818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807650

RESUMO

Objective: We aimed to evaluate the efficacy of antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in the treatment of limb-localized osteomyelitis (Cierny-Mader type III) and analyze the causes and risk factors associated with infection recurrence. Methods: Clinical data of 163 patients with localized osteomyelitis of the extremities treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in Xi'an Honghui Hospital from January 2017 to December 2022 were retrospectively analyzed. All patients were diagnosed with localized osteomyelitis through clinical examination and treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone. Based on the infection recurrence status, the patients were divided into the recurrence group and the non-recurrence group. The clinical data of the two groups were compared using univariate analysis. Subsequently, the distinct datasets were included in the binary logistic regression analysis to determine the risk and protective factors. Results: This study included 163 eligible patients, with an average age of 51.0 years (standard deviation: 14.9). After 12 months of follow-up, 25 patients (15.3%) experienced infection recurrence and were included in the recurrence group; the remaining 138 patients were included in the non-recurrence group. Among the 25 patients with recurrent infection, 20 required reoperation, four received antibiotic treatment alone, and one refused further treatment. Univariate analysis showed that education level, smoking, hypoproteinemia, open injury-related infection, and combined flap surgery were associated with infection recurrence (p < 0.05). Logistic regression analysis showed that open injury-related infection (odds ratio [OR] = 35.698; 95% confidence interval [CI]: 5.997-212.495; p < 0.001) and combined flap surgery (OR = 41.408; 95% CI: 5.806-295.343; p < 0.001) were independent risk factors for infection recurrence. Meanwhile, high education level (OR = 0.009; 95% CI: 0.001-0.061; p < 0.001) was a protective factor for infection recurrence. Conclusion: Antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation is an effective method for treating limb-localized osteomyelitis. Patients without previous combined flap surgery and non-open injury-related infections have a relatively low probability of recurrence of infection after treatment with this surgical method. Additionally, patients with a history of smoking and hypoproteinemia should pay attention to preventing the recurrence of infection after operation. Providing additional guidance and support, particularly in patients with lower education levels and compliance, could contribute to the reduction of infection recurrence.

2.
Small Methods ; : e2400428, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38741554

RESUMO

Efficiency reduction in perovskite solar cells (PSCs) during the magnification procedure significantly hampers commercialization. Vacuum-flash (VF) has emerged as a promising method to fabricate PSCs with consistent efficiency across scales. However, the slower solvent removal rate of VF compared to the anti-solvent method leads to perovskite films with buried defects. Thus, this work employs low-toxic Lewis base ligand solvent N-ethyl-2-pyrrolidone (NEP) to improve the nucleation process of perovskite films. NEP, with a mechanism similar to that of N-methyl-2-pyrrolidone in FA-based perovskite formation, enhances the solvent removal speed owing to its lower coordination ability. Based on this strategy, p-i-n PSCs with an optimized interface attain a power conversion efficiency (PCE) of 24.19% on an area of 0.08 cm2. The same nucleation process enables perovskite solar modules (PSMs) to achieve a certified PCE of 23.28% on an aperture area of 22.96 cm2, with a high geometric fill factor of 97%, ensuring nearly identical active area PCE (24%) in PSMs as in PSCs. This strategy highlights the potential of NEP as a ligand solvent choice for the commercialization of PSCs.

3.
ACS Appl Mater Interfaces ; 16(19): 24760-24770, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708525

RESUMO

Perovskite solar cells (PSCs) have shown great potential for reducing costs and improving power conversion efficiency (PCE). One effective method to achieve the latter is to use an all-inorganic charge transport layer (ICTL). However, traditional methods for crystallizing inorganic layers often result in the formation of a powder instead of a continuous film. To address this issue, we designed a dual-layer inorganic electron transport layer (IETL). This dual-layer structure consists of a layer of SnO2 nanocrystals (SnO2 NCs) deposited via a solution process and a dense SnO2 layer deposited through atomic layer deposition (ALD SnO2) to fill the cracks and gaps between the SnO2 NCs. PSCs having these dual-layer SnO2 ETLs achieved a high efficiency of 23.0%. This efficiency surpasses the recorded performance of ICTLs deposited on the perovskite. Furthermore, the PCE is comparable to that achieved with a C60 ETL. Moreover, the high-density structure of the ALD SnO2 layer inhibits the vertical migration of ions, resulting in improved thermal stability. After continuous heating at 85 °C in 10% humidity for 1000 h, the PCE of the dual-layer SnO2 structure decreased by 18%, whereas that of the C60/BCP structure decreased by 36%. The integration of dual-layer SnO2 into PSCs represents a significant advancement in achieving high-performance, commercially viable inverted monolithic PSCs or tandem solar cells.

4.
Mar Pollut Bull ; 203: 116381, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692001

RESUMO

Due to the widespread use of sliver nanoparticles (AgNPs), a large amount of AgNPs has inevitably been released into the environment, and there is growing concern about the toxicity of AgNPs to nitrogen-functional bacteria. In addition to traditional anaerobic denitrifying bacteria, heterotrophic nitrification-aerobic denitrification (HNAD) bacteria are also important participants in the nitrogen cycle. However, the mechanisms by which AgNPs influence HNAD bacteria have yet to be explicitly demonstrated. In this study, the inhibitory effects of different concentrations of AgNPs on a HNAD bacteria Zobellella sp. B307 were investigated, and the underlying mechanism was explored by analyzing the antioxidant system and the activities of key denitrifying enzymes. Results showed that AgNPs could inhibit the growth and the HNAD ability of Zobellella sp. B307. AgNPs could accumulate on the surface of bacterial cells and significantly destroyed the cell membrane integrity. Further studies demonstrated that the presence of high concentration of AgNPs could result in the overproduction of reactive oxygen species (ROS) and related oxidative stress in the cells. Furthermore, the catalytic activities of key denitrifying enzymes (nitrate reductase (NAR), nitrite reductase (NIR), and nitrous oxide reductase (N2OR)) were significantly suppressed under exposure to a high concentration of AgNPs (20 mg·L-1), which might be responsible for the inhibited nitrogen removal performance of strain B307. This work could improve our understanding of the inhibitory effect and underlying mechanism of AgNPs on HNAD bacteria.

5.
Front Bioeng Biotechnol ; 12: 1388905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650748

RESUMO

Objective: To compare the effects of allogeneic tendon coracoclavicular ligament reconstruction combined with Kirschner wire fixation and clavicular hook plate fixation on early postoperative pain, postoperative shoulder joint function score and shoulder joint mobility in patients with acromioclavicular joint dislocation. Methods: From January 2020 to January 2023, 43 patients with acromioclavicular joint dislocation admitted to Xi 'an Honghui Hospital were included. Among them, 24 patients were treated with the clavicular hook plate technique (Hook Plate,HP) group, and 19 patients were treated with allogeneic tendon coracoclavicular ligament reconstruction combined with the Kirschner wire technique (Allogeneic Tendon, AT) group. The Constant-Murley score of shoulder joint function 6 months after operation, postoperative shoulder joint activity, preoperative and postoperative pain, operation time, intraoperative blood loss and complications were compared between the two groups. Results: All 43 patients were followed up for an average of 9.7 (9-12) months. The intraoperative blood loss in the allogeneic tendon group was less than in the hook plate group. The Constant-Murley shoulder function score was higher than that in the hook plate group 6 months after the operation. The abduction and lifting activity was greater than that in the hook plate group. The visual analogue scale scores at 3 days and 14 days after operation were lower than those in the hook plate group. The difference was statistically significant (p < 0.001). There was 1 case (5.3%) of exudation around the Kirschner needle track in the allogeneic tendon reconstruction group, and 5 cases (20.8%) of complications in the hook plate group, including 1 case of internal fixation stimulation, 2 cases of acromion impingement syndrome, 1 case of acromioclavicular joint osteoarthritis, and 1 case of shoulder joint stiffness. The complication rate of the allogeneic tendon group was lower than that of the hook plate group. Conclusion: The clinical efficacy of allogeneic tendon coracoclavicular ligament reconstruction combined with Kirschner wire fixation in treating acromioclavicular joint dislocation (Rockwood type III-V) is better than hook plate internal fixation. The patients have less early postoperative pain and better recovery of shoulder joint function and shoulder joint mobility.

6.
Heliyon ; 10(7): e28680, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590901

RESUMO

Background: Bruck syndrome (BS) is an extremely rare autosomal-recessive connective tissue disorder mainly characterized by bone fragility, congenital joint contracture, and spinal deformity. It is also considered as a rare form of osteogenesis imperfecta (OI) due to features of osteopenia and fragility fractures. Its two forms, BS1 and BS2, are caused by pathogenic variations in FKBP10 and PLOD2, respectively. Objective: We aimed to improve the clinical understanding of BS by presenting a case from China and to identify the genetic variants that led to this case. Methods: OI was suspected in a Chinese boy with a history of recurrent long bone fractures, lumbar kyphosis, and dentinogenesis imperfecta (DI). Whole-exome sequencing (WES) was performed to identify pathogenic variations. Sanger sequencing was used to confirm the results of the WES. In silico analysis was used to predict the pathogenicity of genetic variants. Results: WES and Sanger sequencing revealed a compound heterozygous variation in the FKBP10 gene (NM_021939, c.23dupG in exon 1, and c.825dupC in exon 5). Both variants resulted in a frameshift and premature stop codon. Of these two variants, c.23dupG has not been previously reported. The patient's parents were heterozygous carriers of one variant. In addition, zoledronic acid treatment improved the vertebral deformity and bone mineral density (BMD) significantly in this patient. Conclusions: A novel compound heterozygous variation of FKBP10, c.23dupG/c.825dupC, was identified in a patient with moderately severe OI. Based on these findings, the patient was diagnosed with BS1 without congenital joint contractures or OI type XI. This study expands the spectrum of FKBP10 genetic variants that cause BS and OI.

7.
Eur J Pharmacol ; 971: 176541, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556120

RESUMO

Spinal cord injury (SCI), a fatal condition, is characterized by progressive tissue degradation and extreme functional deficits with limited treatment options. Hesperetin, a natural flavonoid with potent antioxidant, antiapoptotic and anti-inflammatory properties, has yet to be systematically investigated for its therapeutic effects on neurological damage in rat models of SCI. In this study, rats were given oral hesperetin once daily for 28 days, and their locomotion and histopathological changes were assessed. The findings demonstrated that hesperetin alleviates neurological damage caused by SCI. The observed behavioral improvement could be due to an increase in the survival rate of neurons and oligodendrocytes. This improvement further boosted the ability to repair tissue and form myelin after SCI, ultimately resulting in better neurological outcomes. Furthermore, the present study revealed that hesperetin possesses potent antioxidant capabilities in the context of SCI, reducing the levels of harmful oxygen free radicals and increasing the activity of antioxidant enzymes. Additionally, hesperetin markedly inhibited injury-induced apoptosis, as assessed by caspase-3 immunofluorescence staining and the expression level of caspase-3, indicating the ability of hesperetin to prevent cell death after SCI. Finally, after SCI, hesperetin treatment effectively reduced the expression of inflammatory factors, including IL-1ß, TNFα, and NF-kB, demonstrating the anti-inflammatory effect of hesperetin. Together, our results suggest that hesperetin should be considered a valuable therapeutic aid following SCI, as its positive effects on the nervous system, including antioxidant, anti-inflammatory and antiapoptotic effects, may be crucial mechanisms through which hesperetin exerts neuroprotective effects against SCI.


Assuntos
Antioxidantes , Hesperidina , Traumatismos da Medula Espinal , Ratos , Animais , Caspase 3/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Apoptose , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Medula Espinal
8.
Nat Commun ; 15(1): 1456, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368402

RESUMO

Capturing fine spatial, spectral, and temporal information of the scene is highly desirable in many applications. However, recording data of such high dimensionality requires significant transmission bandwidth. Current computational imaging methods can partially address this challenge but are still limited in reducing input data throughput. In this paper, we report a video-rate hyperspectral imager based on a single-pixel photodetector which can achieve high-throughput hyperspectral video recording at a low bandwidth. We leverage the insight that 4-dimensional (4D) hyperspectral videos are considerably more compressible than 2D grayscale images. We propose a joint spatial-spectral capturing scheme encoding the scene into highly compressed measurements and obtaining temporal correlation at the same time. Furthermore, we propose a reconstruction method relying on a signal sparsity model in 4D space and a deep learning reconstruction approach greatly accelerating reconstruction. We demonstrate reconstruction of 128 × 128 hyperspectral images with 64 spectral bands at more than 4 frames per second offering a 900× data throughput compared to conventional imaging, which we believe is a first-of-its kind of a single-pixel-based hyperspectral imager.

9.
Adv Mater ; 36(18): e2313080, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38242543

RESUMO

Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability are predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation-expansion-contraction strategy is proposed for the first time to optimize the crystallization behavior of perovskite, typically by adeptly harnessing the swelling and deswelling characteristics of poly(4-acryloylmorpholine) (poly(4-AcM)) network on PbI2 surface. It can effectively retard the crystallization rate of perovskite, permitting meliorative crystallinity featured by increased grain size from 0.74 to 1.32 µm and reduced trap density from 1.12 × 1016 to 2.56 × 1015 cm-3. Moreover, profiting from the protection of poly(4-AcM) microencapsulation layer, the degradation of the perovskite is markedly suppressed. Resultant PSCs gain a robust power conversion efficiency (PCE) of 24.04%. Typically, they maintain 91% of their initial PCE for 13 008 h in a desiccated ambient environment and retain 92% PCE after storage for 4000 h with a relative humidity of 50 ± 10%, which is the state-of-the-art long-term stability among the reported contributions.

10.
Clin Interv Aging ; 19: 11-19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204959

RESUMO

Objective: The incidence of hip fracture in the elderly is increasing. Robot navigation technology has the advantages of minimally invasive and accurate. To explore the difference between the clinical effects of proximal femoral anti-rotation intramedullary nail (PFNA) assisted by robot navigation in the treatment of femoral intertrochanteric fracture and traditional PFNA in the treatment of femoral intertrochanteric fracture in the elderly; analyze the advantages and feasibility of PFNA assisted by robot navigation in the treatment of femoral intertrochanteric fracture in the elderly. Patients and Methods: From February 2021 to October 2022, the elderly (>65 years old) with femoral intertrochanteric fracture underwent surgery in our center. Divided the patients included in the study into 2 groups based on the surgical method. The surgical method of robot group was PFNA fixation assisted by robot navigation, while the surgical method of traditional group was classic PFNA fixation, Baseline data (general condition, Evans classification, time from injury to operation, preoperative hemoglobin) and observation indicators (intraoperative bleeding, operation time, the length of incision for mail nail insertion, postoperative hemoglobin drop, blood transfusion rate and the Harris score of hip joint 1 year after operation) of the two groups were collected to compare whether there were differences between the two groups. Results: There was no statistical difference in baseline data between the two groups (P>0.05). The intraoperative bleeding in the robot group was 68.17±10.66 mL, the intraoperative bleeding in the traditional group was 174±8.11mL (P<0.001). The operation time in the robot group was 68.81 ± 6.89 min, in the traditional group, the operation time was 76.94 ± 8.18 min (P<0.001). The length of incision for mail nail insertion in the robot group was 3.53 ± 0.63 cm, the length of the incision for mail nail insertion in the traditional group was 4.23 ± 0.71 cm (P<0.001). 5 patients (13.9%) in the robot group received blood transfusion treatment, and 13 patients (36.1%) in the traditional group received blood transfusion treatment (P=0.029). The hemoglobin in the robot group decreased by 14.81 ± 3.27 g/l after operation compared with that before operation, while that in the traditional group decreased by 16.69 ± 3.32 g/l (P=0.018). The Harris score of the hip joint of the affected limb in the robot group was excellent in 25 cases, good in 8 cases and poor in 3 cases one year after the operation; In the traditional group, Harris scores were excellent in 18 cases, good in 11 cases and poor in 7 cases (P=0.021). Conclusion: PFNA fixation of femoral intertrochanteric fracture with robot navigation assistance has the advantages of minimally invasive and accurate, shorter operation time, less bleeding and lower blood transfusion rate than traditional surgical methods, and has certain advantages in reducing postoperative complications of elderly patients.


Assuntos
Fraturas do Fêmur , Fraturas do Quadril , Robótica , Idoso , Humanos , Estudos Retrospectivos , Fraturas do Quadril/cirurgia , Hemoglobinas
12.
Neural Netw ; 170: 622-634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056409

RESUMO

Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and pixels. Therefore, it hinders the ability of DCNNs to represent abundant features. To tackle the aforementioned issues, we present a Cascaded Visual Attention Network for SISR called CVANet, which simulates the visual attention mechanism of the human eyes to focus on the reconstruction process of details. Specifically, we first designed a trainable feature attention module (FAM) for feature-level attention learning. Afterward, we introduce a channel attention module (CAM) to reinforce feature maps under channel-level attention learning. Meanwhile, we propose a pixel attention module (PAM) that adaptively selects representative features from the previous layers, which are utilized to generate a high-resolution image. Satisfactory, our CVANet can effectively improve the resolution of images by exploring the feature representation capabilities of different modules and the visual perception properties of the human eyes. Extensive experiments with different methods on four benchmarks demonstrate that our CVANet outperforms the state-of-the-art (SOTA) methods in subjective visual perception, PSNR, and SSIM.The code will be made available https://github.com/WilyZhao8/CVANet.


Assuntos
Benchmarking , Percepção Visual , Humanos , Aprendizagem , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador
13.
Int Immunopharmacol ; 127: 111367, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160564

RESUMO

OBJECTIVE: Excess reactive oxygen species (ROS) generated by oxidative stress is a crucial factor affecting neuronal dysfunction after spinal cord injury (SCI). IL-11 has been reported to have antioxidative stress capacity. In the present study, we investigated the protective effect and mechanism of IL-11 against neuronal cell damage caused by oxidative imbalance. METHODS: We established a H2O2-induced oxidative stress injury model in PC12 cells and observed the effects of IL-11 on cellular activity, morphology, oxidase and antioxidant enzymes, and ROS release. Furthermore, the effect of IL-11 on apoptosis of PC12 cells was assessed by flow cytometry, a TUNEL assay and Western blotting. Transcriptome analysis and rescue experiments revealed the mechanism by which IL-11 protects neurons from oxidative stress damage. For the in vivo investigation, an adenovirus-mediated IL-11 overexpression SCI rat model was constructed to validate the beneficial effect of IL-11 against SCI. RESULTS: IL-11 significantly improved the viability and enhanced the antioxidant activity of H2O2-treated PC12 cells while reducing ROS release. In addition, IL-11 reduced H2O2-induced PC12 cell apoptosis. Transcriptome analysis revealed that the JAK/STAT pathway may be related to the antioxidant activity of IL-11. Treatment with a JAK/STAT inhibitor (Stattic) exacerbated the oxidative damage induced by H2O2 and attenuated the protective effects of IL-11. The results of in vivo studies showed that IL-11 prevented neuronal apoptosis due to oxidative imbalance and promoted the restoration of motor function in SCI rats by activating the JAK/STAT signaling pathway. CONCLUSION: IL-11 inhibited oxidative stress-induced neuronal apoptosis at least in part by activating the JAK/STAT signaling pathway and further promoted the recovery of motor function. These findings suggest that IL-11 may be an effective target for the treatment for SCI.


Assuntos
Transdução de Sinais , Traumatismos da Medula Espinal , Ratos , Animais , Janus Quinases/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Interleucina-11/uso terapêutico , Interleucina-11/metabolismo , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição STAT/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Estresse Oxidativo , Neurônios , Apoptose , Medula Espinal/metabolismo
14.
Eur J Pharmacol ; 965: 176287, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38158110

RESUMO

BACKGROUND AND AIMS: Complanatuside A (ComA) is a flavonoid-rich compound in Astragalus membranaceus that has anti-inflammatory and neuroprotective effects. In this study, we focused on the effect of ComA on spinal cord injury (SCI) in mice and explored its possible mechanisms. METHODS: The SCI model was constructed using C57BL/6J mice, and the effect of ComA on motor function recovery in SCI mice was evaluated through the BMS (Basso Mouse Scale) and footprint test. The histological effects of ComA on SCI mice were evaluated by hematoxylin-eosin (H&E) staining, Luxol-fast blue (LFB) staining, and Nissl staining. In both in vivo and in vitro experiments, we detected the activation of microglia and the release of inflammatory factors through molecular experiments. Immunofluorescence and Western blotting confirmed that ComA can prevent neuronal apoptosis caused by activated microglia through the c-Jun N-terminal kinase (JNK) pathway. RESULTS: Our research results confirm that ComA can improve motor function in mice after SCI. Our in vitro results indicate that ComA can inhibit the activation of BV2 cells and the release of proinflammatory mediators. In addition, ComA can prevent neuronal cell apoptosis caused by activated BV2 cells. Finally, we found that ComA works through the JNK signaling pathway. CONCLUSIONS: ComA can accelerate the restoration of motor function in mice after SCI, possibly by reducing neuronal apoptosis via inhibition of JNK-related signaling pathways, a reduction in microglial activation, and inhibition of inflammatory factor release. Our data indicate that ComA is a promising drug candidate for improving functional recovery in patients with SCI.


Assuntos
Flavonóis , Glucosídeos , Sistema de Sinalização das MAP Quinases , Traumatismos da Medula Espinal , Humanos , Camundongos , Animais , Microglia , Recuperação de Função Fisiológica , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal/metabolismo , Apoptose , Medula Espinal
15.
Plant Sci ; 338: 111925, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981085

RESUMO

Chloroplasts are the organelles responsible for photosynthesis and regulate normal plant growth. Although translation elongation factors play important roles in chloroplast development, functional studies of chloroplast translation elongation factors in higher plants remain very sparse. Here, we obtained a rice mutant exhibiting seedling-lethal albino phenotype and named it albino and lethal seedling 1 (als1). Consistently, low content of photosynthetic pigments, malformed chloroplasts and defective photosynthesis were observed in als1 mutant leaves. Map-based cloning experiment showed that als1 mutant had a T base insertion in Os02g0595700, causing a frame shift and premature stop codon. ALS1 encoded a GTP-binding protein EF-Tu, which acts as a translation elongation factor in chloroplast protein translation. ALS1 was found to be expressed throughout plant with highest expression level in young leaves. Moreover, ALS1 was located in chloroplast, whereas the truncated als1 could not normally be located in chloroplast. Additionally, the ALS1 mutation significantly influenced the expression of downstream genes, such as genes relevant to chlorophyll biosynthesis, photosynthesis as well as chloroplast development. These results show that ALS1 acts as a key regulator of chloroplast development and plant growth.


Assuntos
Cloroplastos , Genes de Plantas , Oryza , Proteínas de Plantas , Plântula , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Genes de Plantas/genética , Genes de Plantas/fisiologia
16.
Materials (Basel) ; 16(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068050

RESUMO

Reducing the interfacial defects between the perovskite/electron transport layer (ETL) is the key point to improving the efficient and stable performance of perovskite solar cells (PSCs). In this study, two self-assembled molecules ((aminomethyl)phosphonic acid and glycine) with different functional groups (phosphonic acid (-H2PO3) and carboxylic acid (-COOH)) were mixed to form the buried bottom interface of PSCs. The synergistic effect of -H2PO3 with its higher anchoring ability and -COOH with its fast carrier transport improved the performance of PSCs. Additionally, the SnO2 modified by mixed self-assembly molecules (M-SAM) showed a more appropriate energy level alignment, favoring charge transport and minimizing energy loss. In addition, the amine group (-NH2) on the two small molecules effectively interacted with uncoordinated Pb2+ in perovskite and improved the quality of the perovskite films. Consequently, the (FAPbI3)0.992(MAPbBr3)0.008 PSCs with M-SAM reached a PCE of 24.69% (0.08 cm2) and the perovskite modules achieved a champion efficiency of 18.57% (12.25 cm2 aperture area). Meanwhile, it still maintained more than 91% of its initial PCE after being placed in nitrogen atmosphere at 25 °C for 1500 h, which is better than that of the single-SAM and control devices. Further reference is provided for the future commercialization of perovskite with efficient and stable characteristics.

17.
Sci Rep ; 13(1): 22026, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087037

RESUMO

Posterolateral (PL)-depression fractures of the tibial plateau are difficult to manage. The aim of this study was: (1) to present our experience with a novel technique of robot-assisted percutaneous reduction and fixation and (2) to compare it with the traditional percutaneous screw osteosynthesis (PSO) technique for the treatment of PL-depression tibial plateau fractures. The clinical data of patients with PL-depression tibial plateau fractures treated by robot-assisted percutaneous reduction and fixation technique and traditional PSO technique from January 2017 to January 2021 were retrospectively analyzed. Among them, there were 18 cases in the robot-assisted group (RA group) and 23 cases in the PSO group. All fractures were unilateral, closed and fresh PL-depression fractures of the tibial plateau. Patients in the RA group were treated by robot assisted reduction and minimally invasive absorbable screw fixation. The PSO group was treated by closed reduction and percutaneous absorbable screw osteosynthesis. The incision length, operation time, intraoperative blood loss, fluoroscopic times, inpatient time, weight training time and postoperative complications of the two groups were statistically analyzed. The Rasmussen radiological score was used to assess the reduction quality after operation while the Rasmussen functional score was used to evaluate knee joint functions at one year postoperatively. All patients were followed for at least one year. There was no significant difference in demographic information between the two groups (p > 0.05). Compared with the PSO group, the RA group showed less fluoroscopic times and better Rasmussen radiological and functional scores (p < 0.05). Besides, there was no significant difference in the incidence of postoperative complications between the two groups (p > 0.05). The novel robot-assisted percutaneous reduction and fixation technique had the characteristics of less radiation, accurate reduction and fixation. It could accelerate the rehabilitation of patients with PL-depression fractures of the tibial plateau and enable patients to obtain good joint functions.


Assuntos
Robótica , Fraturas da Tíbia , Fraturas do Planalto Tibial , Humanos , Estudos de Viabilidade , Estudos Retrospectivos , Depressão , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/cirurgia , Fixação Interna de Fraturas/métodos , Complicações Pós-Operatórias , Resultado do Tratamento
18.
Orthop Surg ; 15(12): 3254-3262, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37753546

RESUMO

OBJECTIVE: Hip fractures are the most common fractures among older adults, with most patients undergoing surgery. The debate regarding the type of anesthetic technique for hip fracture surgery is still ongoing. This meta-analysis aimed to compare the intraoperative and postoperative outcomes of spinal and general anesthesia in older patients undergoing hip fracture surgery. METHODS: Eligible studies that compared the effects of spinal and general anesthesia were systematically searched from PubMed, Embase, and the Cochrane Library until May 27, 2022. The intraoperative and postoperative outcomes of the two anesthesia techniques were compared. Quality assessment, heterogeneity analysis, and publication bias of the studies were also assessed. RESULTS: Nine articles of methodological quality were included in the meta-analysis. The pooled results revealed that there were significant differences in hypotension (risk ratio [RR] (95% confidence interval [CI]) = 0.81 (0.68, 0.97), p = 0.02) and ephedrine dose (weighted mean difference [WMD] [95%CI] = -20.94 [-37.50, -4.37] mg, p = 0.01) between the spinal and general anesthesia groups. However, no significant differences were observed in the use of ephedrine (RR [95% CI] = 0.77 [0.19, 3.05]), blood loss (WMD [95%CI] = -34.38 [-89.56, 20.80) mL], myocardial infarction (RR [95% CI] = 0.78 [0.31, 1.94] mL), heart failure (RR [95% CI] = 0.87 [0.17, 4.36] mL), stroke (RR [95%CI) = 0.65 [0.22, 1.95] mL), postoperative nausea and vomiting (RR [95% CI] = 0.88 [0.17, 4.35] mL), delirium (RR [95% CI] = 1.08 [0.89, 1.31] mL), and mortality (RR [95% CI] = 1.10 [0.72, 1.68] mL) (all p < 0.05). No publication bias was observed in any of the included studies. CONCLUSION: Compared to general anesthesia, spinal anesthesia was associated with a lower risk of intraoperative hypotension and lower doses of ephedrine in older patients undergoing hip fracture surgery.


Assuntos
Raquianestesia , Fraturas do Quadril , Hipotensão , Humanos , Idoso , Efedrina , Ensaios Clínicos Controlados Aleatórios como Assunto , Anestesia Geral , Fraturas do Quadril/cirurgia
19.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 703-712, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37674468

RESUMO

Objective To explore the effect of shionone(SHI)on motor function in the mouse model of spinal cord injury(SCI)and probe into the underlying molecular mechanism.Methods C57BL/6 mice were treated to induce the SCI model and then assigned into a model group(SCI group),a SCI+SHI group,and a sham surgery(control)group.The Basso mouse scale(BMS)score was determined to evaluate the recovery of motor function in SCI mice.Hematoxylin-eosin(HE)staining,Nissl staining,and immunofluorescence staining were employed to examine the fibrosis,morphological changes of neurons,and neuron apoptosis in the spinal cord tissue of SCI mice,respectively.The mouse hippocampal neuronal cell line HT22 was cultured in vitro and then classified into tumor necrosis factor α(TNF-α)induction and SHI groups.Western blotting was employed to determine the expression of apoptosis-associated proteins.Network pharmacology,gene ontology annotation,and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were employed to predict the possible molecular targets and signaling pathways of SHI in promoting functional recovery from SCI.Furthermore,the prediction results were verified by in vitro and in vivo experiments.Results Compared with the SCI group,the SCI+SHI group showed increased BMS score on days 21,28,35,and 42(P=0.003,P=0.004,P=0.023,and P=0.007,respectively),reduced area of spinal cord fibrosis(P=0.021),increased neurons survived(P=0.001),and down-regulated expression of cleaved cysteine aspastic acid-specific protease 3(cleaved Caspase-3)(P=0.017).Compared with the TNF-α group,the SHI group presented down-regulated expression levels of cleaved Caspase-3 and Bax(P=0.010,P=0.001)and up-regulated expression level of Bcl-2(P=0.001).The results of bioinformatics analysis showed that SHI might improve the motor function of SCI mice via the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)signaling pathway.The results of in vivo and in vitro experiments showed that SHI inhibited the phosphorylation of PI3K and Akt in SCI mice or HT22 cells exposed to TNF-α(all P<0.05).The number of apoptotic HT22 cells after treatment with insulin-like growth factor 1 was higher than that in the SHI group(P=0.003).Conclusion SHI may inhibit neuron apoptosis via the PI3K/Akt signaling pathway,thereby promoting the recovery of motor function in SCI mice.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Traumatismos da Medula Espinal , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caspase 3/metabolismo , Fosfatidilinositol 3-Quinases , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Apoptose , Neurônios/patologia , Fibrose
20.
Exp Neurol ; 369: 114536, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37690527

RESUMO

BACKGROUND AND AIMS: Overexpressed MMP-9 in vascular endothelial cells is involved in blood spinal cord barrier (BSCB) dysfunction in spinal cord injury (SCI). Esculentoside A (EsA) has anti-inflammatory and cell protective effects. This study aimed to evaluate its effects on neuromotor function in SCI rats, as well as the potential mechanisms. METHODS: The therapeutic effect of EsA in SCI rats was investigated using Basso-Beattie-Bresnahan (BBB) scores, a grid walk test and histological analyses. To assess the protective role of EsA in the BSCB and in oxygen glucose deprivation/reoxygenation (OGD/R)-induced hBMECs, the BSCB function, tight junctions (TJ) protein (ZO-1 and claudin-5) expression, structure of the BSCB and Matrix metalloproteinase-9 (MMP-9) expression were observed via Evans blue (EB) detection, immunofluorescence analyses and western blotting. Molecular docking simulations and additional experiments were performed to explore the potential mechanisms by which EsA maintains the function of the BSCB in vivo and in vitro. RESULTS: EsA treatment improved BBB scores, reduced cavity formation and the loss of neuronal cells, demonstrating an improvement in motor function in SCI rats. In vivo experiments showed that EsA decreased the infiltration of blood cells and inflammatory mediators (IL-1ß, IL-6 and TNF-α) and protected the structure of TJs in the rat spinal cord and in OGD/R-induced hBMECs. EsA inhibited the activation of Toll-like receptor 4 (TLR4) signalling, which may be related to the protective effect of EsA against MMP-9-induced BSCB damage. CONCLUSIONS: EsA downregulated MMP-9 expression in vascular endothelial cells, protected BSCB function in SCI rats and attenuated TLR4 signalling and thus provide new options for the treatment of SCI.


Assuntos
Metaloproteinase 9 da Matriz , Traumatismos da Medula Espinal , Ratos , Animais , Metaloproteinase 9 da Matriz/metabolismo , Ratos Sprague-Dawley , Células Endoteliais/metabolismo , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Proteínas de Junções Íntimas/metabolismo , Barreira Hematoencefálica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA