Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36234467

RESUMO

The shortage of powerful functionalities on scalable α-zirconium phosphate (ZrP) materials blocks the facile preparation of highly dispersed and immobilized metal nanocatalysts. We herein present a mild and facile mussel-inspired strategy based on polydopamine (PDA) for the surface modification of ZrP, and hence, the generation of powerful functionalities at a high density for the straightforward reduction of chloroauric acid to Au nanoparticles (AuNPs) and the immobilization of AuNPs. The resulting ternary ZrP@PDA/Au exhibited ultra-small AuNPs with a particle size of around 6.5 nm, as estimated based on TEM images. Consequently, the ZrP@PDA/Au catalyst showed significant activity in the catalytic conversion of 4-nitrophenol (4NP) to 4-aminophenol (4AP), a critical transformation reaction in turning the hazard into valuable intermediates for drug synthesis. The PDA was demonstrated to play a critical role in the fabrication of the highly efficient ZrP@PDA/Au catalyst, far outperforming the ZrP/Au counterpart. The turnover frequency (TOF) achieved by the ZrP@PDA/Au reached as high as 38.10 min-1, much higher than some reported noble metal-based catalysts. In addition, the ZrP@PDA/Au showed high stability and reusability, of which the catalytic efficiency was not significantly degraded after prolonged storage in solution.

2.
Mar Pollut Bull ; 181: 113856, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35753251

RESUMO

The suspended particulate matter (SPM) is an important carrier of heavy metals transportation from land to sea, so it is significant to study the heavy metal pollution in SPM. The distribution and assessment of five heavy metals (Mn, Cr, Ni, Cu, and Pb) in SPM collected from Passur River and its estuary in Sundarban were studied in combination with water temperature, salinity, and turbidity. The results show that the heavy metal content and distribution in SPM are mainly controlled by runoff input, hydrodynamic process and the interaction process of salt and fresh water in estuaries. The quality evaluation results of heavy metals in SPM show that pollution degree is light. Studies on the heavy metals in SPM are of great significance to comprehensively evaluate regional pollution status and carry out early warning.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Bangladesh , China , Monitoramento Ambiental/métodos , Estuários , Sedimentos Geológicos , Metais Pesados/análise , Material Particulado/análise , Rios , Poluentes Químicos da Água/análise
3.
Nanomicro Lett ; 14(1): 98, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394219

RESUMO

Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety, environmental friendliness, and low cost. However, the freezing of aqueous electrolytes limits the normal operation of batteries at low temperatures. Herein, a series of high-performance and low-cost chloride hydrogel electrolytes with high concentrations and low freezing points are developed. The electrochemical windows of the chloride hydrogel electrolytes are enlarged by > 1 V under cryogenic conditions due to the obvious evolution of hydrogen bonds, which highly facilitates the operation of electrolytes at ultralow temperatures, as evidenced by the low-temperature Raman spectroscopy and linear scanning voltammetry. Based on the Hofmeister effect, the hydrogen-bond network of the cooperative chloride hydrogel electrolyte comprising 3 M ZnCl2 and 6 M LiCl can be strongly interrupted, thus exhibiting a sufficient ionic conductivity of 1.14 mS cm-1 and a low activation energy of 0.21 eV at -50 °C. This superior electrolyte endows a polyaniline/Zn battery with a remarkable discharge specific capacity of 96.5 mAh g-1 at -50 °C, while the capacity retention remains ~ 100% after 2000 cycles. These results will broaden the basic understanding of chloride hydrogel electrolytes and provide new insights into the development of ultralow-temperature aqueous batteries.

4.
Mar Pollut Bull ; 164: 112047, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33515828

RESUMO

The concentrations of Cr, Ni, Cu, Zn, As, Cd, Pb, and Al in suspended particles were measured, and temperature, salinity, flow velocity and direction during a tidal cycle were observed before and after Typhoon Fung-wong at six stations in Quanzhou Bay, respectively. The comparison results show that, after the typhoon, the salinity in Quanzhou Bay decreased, whereas the concentrations of heavy metals increased by a factor of between 2 and 10, and the high heavy metal concentration corresponded to the low value of ratio between heavy metals and Al (HMs/Al), suggesting that these increased heavy metals were mainly from natural sources. Instantaneous unit width flux calculations for heavy metals at different stations indicate that sediments are an important source of heavy metals in suspended particles under the influence of typhoon, which has significantly contribution to understanding the impact of typhoons on the heavy metal pollution in the coastal area.


Assuntos
Tempestades Ciclônicas , Metais Pesados , Poluentes Químicos da Água , Baías , China , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Poluentes Químicos da Água/análise
5.
Macromol Rapid Commun ; 42(1): e2000446, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33108036

RESUMO

Hydrogels and polydimethylsiloxane (PDMS) are complementary to each other, since the hydrophobic PDMS provides a more stable and rigid substrate, while the water-rich hydrogel possesses remarkable hydrophilicity, biocompatibility, and similarity to biological tissues. Herein a transparent and stretchable covalently bonded PDMS-hydrogel bilayer (PHB) structure is prepared via in situ free radical copolymerization of acrylamide and allylamine-exfoliated-ZrP (AA-e-ZrP) on a functionalized PDMS surface. The AA-e-ZrP serves as cross-linking nano-patches in the polymer gel network. The covalently bonded structure is constructed through the addition reaction of vinyl groups of PDMS surface and monomers, obtaining a strong interfacial adhesion between the PDMS and the hydrogel. A mechanical-responsive wrinkle surface, which exhibs transparency change mechanochromism, is created via introducing a cross-linked polyvinyl alcohol film atop the PHB structure. A finite element model is implemented to simulate the wrinkle formation process. The implication of the present finding for the interfacial design of the PHB and PDMS-hydrogel-PVA trilayer (PHPT) structures is discussed.


Assuntos
Dimetilpolisiloxanos , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Álcool de Polivinil
6.
Nano Converg ; 7(1): 32, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33006681

RESUMO

Traditional transparent conducting oxides (TCOs) have been widely used for various optoelectronic applications, but have the trade-off between conductivity and transmittance. Recently, perovskite oxides, with structural and chemical stability, have exhibited excellent physical properties as new TCOs. We focus on SrVO3-based perovskites with a high carrier concentration and BaSnO3-based perovskites with a high mobility for n-type TCOs. In addition, p-type perovskites are discussed, which can serve as potential future options to couple with n-type perovskites to design full perovskite based devices.

7.
Microsyst Nanoeng ; 6: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34567654

RESUMO

Since toxic gas leakage may cause ecological environmental problems and even life-threatening damage, effective monitoring of toxic gas is of great importance and subject to increasing demand. However, complicated environmental factors, as well as various coexisting interferences can easily affect the sensitivity and selectivity of gas sensors, hindering their performance. Recent reports have successfully demonstrated the development of hierarchical nanostructures with desirable self-cleaning properties, yet gas sensors that can resist contamination have rarely been realized. Here, we developed a reentrant thorny ZnO/graphene hybrid nanowall structure that simultaneously repels liquid contamination and possesses NH3 gas sensing properties. The unique reentrant and hierarchical structure, featuring an interconnected vertical graphene nanowall framework with numerous ZnO nanospikes branched on the top nanowall, is highly repellent to liquids, even biofluids with low surface tension. The hierarchical structure consisting of gas sensing graphene and ZnO can be successfully applied as an NH3 gas sensor at room temperature, exhibiting not only excellent sensitivity, selectivity, and repeatability, but also outstanding stability even after bacterial contamination. This study provides a versatile method for fabricating reentrant and hierarchical structures with excellent liquid repellency, and offers a promising method for designing reliable gas sensors with anti-biofouling properties.

8.
Polymers (Basel) ; 11(3)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30960426

RESUMO

In this paper, we present a facile and efficient strategy for the fabrication of magnetic, durable, and superhydrophobic cotton for oil/water separation. The superhydrophobic cotton functionalized with Fe3O4 magnetic nanoparticles was prepared via the in situ coprecipitation of Fe2+/Fe3+ ions under ammonia solution on cotton fabrics using polyvinylpyrrolidone (PVP) as a coupling agent and hydrophobic treatment with tridecafluorooctyl triethoxysilane (FAS) in sequence. The as-prepared cotton demonstrated excellent superhydrophobicity with a water contact angle of 155.6° ± 1.2° and good magnetic responsiveness. Under the control of the external magnetic field, the cotton fabrics could be easily controlled to absorb the oil from water as oil absorbents, showing high oil/water separation efficiency, even in hot water. Moreover, the cotton demonstrated remarkable mechanical durable properties, being strongly friction-resistant against sandpaper and finger wipe, while maintaining its water repellency. This study developed a novel and efficient strategy for the construction of magnetic, durable, and superhydrophobic biomass-based adsorbent for oil/water separation, which can be easily scaled up for practical oil absorption.

9.
ACS Appl Mater Interfaces ; 11(5): 4809-4819, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30628778

RESUMO

Real-time transdermal biosensing provides a direct route to quantify biomarkers or physiological signals of local tissues. Although microneedles (MNs) present a mini-invasive transdermal technique, integration of MNs with advanced nanostructures to enhance sensing functionalities has rarely been achieved. This is largely due to the fact that nanostructures present on MNs surface could be easily destructed due to friction during skin insertion. In this work, we reported a dissolvable polymer-coating technique to protect nanostructures-integrated MNs from mechanical destruction during MNs insertion. After penetration into the skin, the polymer could readily dissolve by interstitial fluids so that the superficial nanostructures on MNs could be re-exposed for sensing purpose. To demonstrate this technique, metallic and resin MNs decorated with vertical ZnO nanowires (vNWs) were employed as an example. Dissolvable poly(vinyl pyrrolidone) was spray-coated on the vNW-MNs surface as a protective layer, which effectively protected the superficial ZnO NWs when MNs penetrated the skin. Transdermal biosensing of H2O2 biomarker in skin tissue using the polymer-protecting MNs sensor was demonstrated both ex vivo and in vivo. The results indicated that polymer coating successfully preserved the sensing functionalities of the MNs sensor after inserting into the skin, whereas the sensitivity of the MN sensor without a coating protection was significantly compromised by 3-folds. This work provided unique opportunities of protecting functional nanomodulus on MNs surface for minimally invasive transdermal biosensing.


Assuntos
Técnicas Biossensoriais/instrumentação , Microinjeções/instrumentação , Nanofios/química , Agulhas , Animais , Desenho de Equipamento , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Povidona/química , Pele/química , Suínos , Óxido de Zinco/química
10.
Mar Pollut Bull ; 125(1-2): 492-500, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28807422

RESUMO

To understand the source-to-sink of pollutants in the Kelantan River estuary and the adjacent shelf area in Malaysia, a total of 42 surface sediment samples were collected in the Kelantan River-estuary-shelf system to analyze for grain size, total organic carbon (TOC) content, Al and heavy metals (Cr, Ni, Cu, Zn, Cd and Pb). The surficial sediments were mainly composed of clayey silt and the TOC content in sediments decreased from the river to the shelf. The surficial sediments experienced Pb pollution; Cr only showed a certain level of pollution in the coastal area of the estuary but not in other areas, and Ni, Cu, Zn, and Cd showed no pollution. The heavy metals mainly originated from natural weathering and erosion of rocks and soils in the catchment and enriched near the river mouth. Total organic carbon can promote the enrichment of heavy metals in sediments.


Assuntos
Sedimentos Geológicos/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Poluição Ambiental/análise , Estuários , Malásia , Rios
11.
Chemosphere ; 174: 764-773, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28196685

RESUMO

The geochemical compositions of sediments in the Dongshan Bay, a semi-enclosed bay on the southeast coast of China, were obtained to identify pollutant sources and evaluate the anthropogenic impacts over the last 100 years. The results indicated that the metal flux had been increasing since the 1980s. Enrichment factor values (Pb, Zn and Cu) suggested only slight enrichment. The proportion of anthropogenic Pb changed from 9% to 15% during 2000-2014. Coal combustion might be an important contamination source in the Dongshan Bay. The historical variation in the metal flux reflected the economic development and urbanization in the Zhangjiang drainage area in the past 30 years. According to the Landsat satellite remote sensing data, the urbanization area expanded approximately three times from 1995 to 2010. The δ13C values (-21‰ to -23‰) of the organic matter (OM) in the sediments indicated that the OM was primarily sourced from aquatic, terrigenous and marsh C3 plants. Nitrogen was mainly derived from aquatic plants and terrigenous erosion before the 1980s. However, the total organic carbon (TOC) contents, total nitrogen (TN) contents and δ15N had been increasing since the 1980s, which suggested that the sources of nitrogen were soil erosion, fertilizer and sewage. In addition, the TOC and TN fluxes in the Dongshan Bay had significantly increased since the 1980s, which reflected the use of N fertilizer. However, the TOC and TN fluxes significantly decreased in the past decade because environmental awareness increased and environmental protection policies were implemented.


Assuntos
Baías/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , China , Fertilizantes/análise , Humanos , Metais Pesados/análise , Nitrogênio/análise , Esgotos/química
12.
Springerplus ; 5(1): 2079, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018787

RESUMO

Heavy metal contamination of aquatic environment has attracted global attention owing to its abundance, persistence, and environmental toxicity, especially in developing countries like Bangladesh. Five heavy metals, namely chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) were investigated in surface and core sediments of the Karnaphuli River (KR) estuary in Chittagong, Bangladesh, in order to reveal the heavy metal contamination history in estuarine sediments and its response to catastrophic events and human activities. The surface sediment was predominantly composed of silt and sand, and the surface sediment was contaminated with Cr and Pb. Based on the 210Pb chronology, the sedimentation rate in the inter-tidal zone of KR estuary was 1.02 cm/a before 2007, and 1.14 cm/a after 2008. The core sediment collected from 8 to 20 cm below the surface mainly originated from terrestrial materials induced by catastrophic events such as cyclone, heavy rainfall and landslides in 2007 and 2008. The values of contamination factor (CF) showed that the sediment became moderately contaminated with Cr and Pb in the last 30 years. The variation and accumulation of heavy metals in core sediment before 2000 was mainly related to natural variations in sediment sources; however, in subsequent years, the anthropogenic inputs of heavy metals have increased due to rapid physical growth of urban and industrial areas in the Chittagong city. In general, the accumulation pattern of heavy metals after normalization to Aluminum in sediments of KR estuary indicated an accelerated rate of urbanization and industrialization in the last 30 years, and also suggested the influence of natural catastrophic event on estuarine environment.

13.
Sci Rep ; 5: 14904, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26446444

RESUMO

Typhoons have a significant effect on the marine depositional environment and depositional process. In this paper, we used the high-resolution Chirp sonar sub-bottom profiler and radioisotope detection techniques to examine the storm-deposited layer formed in the seawater near the path of Typhoon Saola along the coast of Fujian, China. The thickness of the typhoon-deposited layer acquired using these two methods was 10-25 cm. The thickness, sediment grain size, and δ(13)C values of the deposited sedimentary layer indicated that it was mainly matter from the re-suspension and redistribution of seafloor sediments. The particle sizes of the sediments in the storm-deposited layer became coarser, indicating that the fine-grade compositions spread over a wider range out of the coastal zone.

14.
Sci Total Environ ; 493: 729-36, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24995639

RESUMO

Two sedimentary cores in the Minjiang River estuary (SE China) are documented for grain size, clay minerals, heavy metals, magnetic parameters and Pb isotopes to investigate the source and historical variation of heavy metals. The MJK9 core was collected outside of the Minjiang River estuary, and the core is composed of mixed sediments, of which ~70% from the Yangtze River and 30% from the Minjiang River. It is thus difficult to be used for tracing the human activity along the Minjiang River. In contrast, the sediments of MJK16 core which was collected in a nearshore area are primarily from the Minjiang River. The enrichment factors of the sediments were <1.5, indicating minor pollution. The results indicate that the sediments of the MJK16 core have Cu and Pb concentrations increasing since 1980, associated with the increase of magnetic mineral concentration and (206)Pb/(207)Pb and (206)Pb/(208)Pb of the sediments. We compared the Pb isotopic compositions between our results and those for the deposit mining in the Minjiang River basin, and aerosols and coal dust in south China, and considered that Pb in the sediments of the MJK16 core was derived primarily from weathered rocks as well as industrial emission (e.g. coal combustion). The sediments have anthropogenic Pb concentrations ranging from 6% in 1950 to 23.7% in 2010, consistent with the impact of rapid urban and industrial development in China.


Assuntos
Monitoramento Ambiental , Estuários , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA