Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508331

RESUMO

Cotton Verticillium wilt, mainly caused by Verticillium dahliae, has a serious impact on the yield and quality of cotton fiber. Many microRNAs (miRNAs) have been identified to participate in plant resistance to V. dahliae infection, but the exploration of miRNA's function mechanism in plant defense is needed. Here, we demonstrate that the ghr-miR482b-GhRSG2 module mediates cotton plant resistance to V. dahliae infection. Based on the mRNA degradation data and GUS fusion experiments, ghr-miR482b directedly bonds to GhRSG2 mRNA to lead to its degradation. The knockdown and overexpression of ghr-miR482b through virus-induced gene silencing strategies enhanced (decreased by 0.39-fold in disease index compared with the control) and weakened (increased by 0.46-fold) the plant resistance to V. dahliae, respectively. In addition, silencing GhRSG2 significantly increased (increased by 0.93-fold in disease index) the plant sensitivity to V. dahliae compared with the control plants treated with empty vector. The expression levels of two SA-related disease genes, GhPR1 and GhPR2, significantly decreased in GhRSG2-silenced plants by 0.71 and 0.67 times, respectively, and in ghr-miR482b-overexpressed (OX) plants by 0.59 and 0.75 times, respectively, compared with the control, whereas the expression levels of GhPR1 and GhPR2 were significantly increased by 1.21 and 2.59 times, respectively, in ghr-miR482b knockdown (KD) plants. In sum, the ghr-miR482b-GhRSG2 module participates in the regulation of plant defense against V. dahliae by inducing the expression of PR1 and PR2 genes.

2.
Plant Sci ; 330: 111647, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36806608

RESUMO

Many cotton miRNAs in root responding to Verticillium dahliae infection have been identified. Conversely, the miRNAs in leaf distantly responding to this fungal infection from roots via systemic acquired resistance (SAR) remain to be explored. Here, we constructed two groups of leaf sRNA libraries in cotton treated with V. dahliae via root-dipped method at 7- and 10-day post inoculation. Analysis of high-throughput sRNA sequencing identified 75 known and 379 novel miRNAs, of which 41 miRNAs significantly differentially expressed in fungal treatment plant leaves compared to the mock treatment at two time points. Then we characterized the cotton miR530-SAP6 module as a representative in the distant response to V. dahliae infection in roots. Based on degradome data and a luciferase (LUC) fusion reporter analysis, ghr-miR530 directedly cleaved GhSAP6 mRNA during the post-transcriptional process. Silencing of ghr-miR530 increased plant defense to this fungus, while its overexpression attenuated plant resistance. In link with ghr-miR530 function, the knockdown of GhSAP6 also decreased the plant resistance, resulting from down-regulation of SA-relative gene expression including GhNPR1 and GhPR1. In all, these results demonstrated that there are numerous miRNAs in leaf distantly responding to V. dahliae infection in roots mediate plant immunity.


Assuntos
Ascomicetos , MicroRNAs , Pequeno RNA não Traduzido , Verticillium , Resistência à Doença/genética , Verticillium/fisiologia , Ascomicetos/genética , MicroRNAs/genética , Gossypium/genética , Gossypium/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA