Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
J Agric Food Chem ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767652

RESUMO

Granule-associated surface lipids (GASLs) and internal lipids showed different lipid-amylose relationships, contents, and distributions, suggesting their differing biological origins and functions, among waxy, normal, and high-amylose rice starch. The GASL content mainly depended on the pore size, while internal lipids regulated starch biosynthesis, as indicated by correlations of internal lipids with the chain length distribution of amylopectin and amylose content. Of the 1346 lipids detected, 628, 562, and 408 differentially expressed lipids were observed between normal-waxy, high-amylose-waxy, and normal-high-amylose starch, respectively. After the removal of GASLs, the higher lysophospholipid content induced greater decreases in the peak and breakdown viscosity and swelling power, while the highest digestibility increase was found with the highest triacylglycerol content. Thus, different GASL compositions led to different digestibility, swelling, and pasting outcomes. This study sheds new light on the mechanism of the role of GASLs in the structure and properties of starch, as well as in potential modifications and amyloplast membrane development.

2.
Chem Sci ; 15(19): 7160-7169, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756794

RESUMO

Autonomous process optimization (APO) is a technology that has recently found utility in a multitude of process optimization challenges. In contrast to most APO examples in microflow reactor systems, we recently presented a system capable of optimization in high-throughput batch reactor systems. The drawback of APO in a high-throughput batch reactor system is the reliance on reaction sampling at a predetermined static timepoint rather than a dynamic endpoint. Static timepoint sampling can lead to the inconsistent capture of the process performance under each process parameter permutation. This is important because critical process behaviors such as rate acceleration accompanied by decomposition could be missed entirely. To address this drawback, we implemented a dynamic reaction endpoint determination strategy to capture the product purity once the process stream stabilized. We accomplished this through the incorporation of a real-time plateau detection algorithm into the APO workflow to measure and report the product purity at the dynamically determined reaction endpoint. We then applied this strategy to the autonomous optimization of a photobromination reaction towards the synthesis of a pharmaceutically relevant intermediate. In doing so, we not only uncovered process conditions to access the desired monohalogenation product in 85 UPLC area % purity with minimal decomposition risk, but also measured the effect of each parameter on the process performance. Our results highlight the advantage of incorporating dynamic sampling in APO workflows to drive optimization toward a stable and high-performing process.

3.
Cell Death Dis ; 15(5): 332, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740744

RESUMO

Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.


Assuntos
Fatores de Transcrição Forkhead , Neoplasias Ovarianas , Receptores Proteína Tirosina Quinases , Via de Sinalização Wnt , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Linhagem Celular Tumoral , Animais , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , Proliferação de Células
4.
Front Neurosci ; 18: 1309684, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576865

RESUMO

The loss of dopaminergic neurons in the substantia nigra and the abnormal accumulation of synuclein proteins and neurotransmitters in Lewy bodies constitute the primary symptoms of Parkinson's disease (PD). Besides environmental factors, scholars are in the early stages of comprehending the genetic factors involved in the pathogenic mechanism of PD. Although genome-wide association studies (GWAS) have unveiled numerous genetic variants associated with PD, precisely pinpointing the causal variants remains challenging due to strong linkage disequilibrium (LD) among them. Addressing this issue, expression quantitative trait locus (eQTL) cohorts were employed in a transcriptome-wide association study (TWAS) to infer the genetic correlation between gene expression and a particular trait. Utilizing the TWAS theory alongside the enhanced Joint-Tissue Imputation (JTI) technique and Mendelian Randomization (MR) framework (MR-JTI), we identified a total of 159 PD-associated genes by amalgamating LD score, GTEx eQTL data, and GWAS summary statistic data from a substantial cohort. Subsequently, Fisher's exact test was conducted on these PD-associated genes using 5,152 differentially expressed genes sourced from 12 PD-related datasets. Ultimately, 29 highly credible PD-associated genes, including CTX1B, SCNA, and ARSA, were uncovered. Furthermore, GO and KEGG enrichment analyses indicated that these genes primarily function in tissue synthesis, regulation of neuron projection development, vesicle organization and transportation, and lysosomal impact. The potential PD-associated genes identified in this study not only offer fresh insights into the disease's pathophysiology but also suggest potential biomarkers for early disease detection.

5.
J Ethnopharmacol ; 330: 118067, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636574

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jingfang Baidu Powder (JFBDP) is a classic traditional Chinese medicine prescription. Although Jingfang Baidu powder obtained a general consensus on clinical efficacy in treating pneumonia, there were many Chinese herbal drugs in formula, complex components, and large oral dosage, which brings certain obstacles to clinical application. AIM OF THE STUDY: Therefore, screening of the active fraction that exerts anti-pneumonia helps improve the pharmaceutical preparation, improve the treatment compliance of patients, and further contribute to the clinical application, and the screening of the new active ingredients with anti-pneumonia. The histopathological observation, real-time quantitative PCR, western blotting, and immunofluorescence were applied to evaluate the anti-pneumonia efficacy of active fractions from JFBDP. RESULTS: Three fractions from JFBDP inhibit the gene expression of IL-1ß, IL-10, CCL3, CCL5, and CCL22 in lung tissue infected by Klebsiella at various degrees, and presented a good dose-response relationship. JF50 showed stronger anti-inflammatory effects among three fractions including JF30, JF50, and JF75. Besides, JF50 significantly reduced the protein expression of TLR4 and Myd88 in lung tissue infected with Klebsiella, and it also significantly inhibited p-ERK and p-NF-κB p65. JF50 significantly inhibits the protein expression of Caspase 3, Caspase 8, and Caspase 9 in lung tissue infected with Klebsiella at the dose of 25 mg/kg and 50 mg/kg. CONCLUSION: JF50 improves lung pathological damage in Klebsiella pneumonia mice by inhibiting the TLR4/Myd88/NF-κB-ERK signaling pathway, and inhibiting apoptosis of lung tissue cells. These findings provide a reference for further exploring the active substance basis of Jingfang Baidu Powder in treating bacterial pneumonia.


Assuntos
Medicamentos de Ervas Chinesas , Infecções por Klebsiella , Fator 88 de Diferenciação Mieloide , Pós , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos , Masculino , Infecções por Klebsiella/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL
6.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38603796

RESUMO

Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.


Assuntos
Diapausa , Nutrientes , Animais , Feminino , Camundongos , Blastocisto/metabolismo , Diapausa/fisiologia , Desenvolvimento Embrionário/fisiologia
7.
J Agric Food Chem ; 72(18): 10163-10178, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38653191

RESUMO

Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.


Assuntos
Bactérias , Carboxiliases , Carboxiliases/genética , Carboxiliases/metabolismo , Carboxiliases/química , Bactérias/genética , Bactérias/enzimologia , Bactérias/metabolismo , Fungos/genética , Fungos/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Biocatálise , Oxalatos/metabolismo , Oxalatos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Regulação Enzimológica da Expressão Gênica , Humanos , Catálise , Animais
8.
Curr Med Sci ; 44(2): 426-434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561594

RESUMO

OBJECTIVE: Glucose-6-phosphate isomerase (GPI) deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants. This disorder exhibits wide heterogeneity in its clinical manifestations and molecular characteristics, often posing challenges for precise diagnoses using conventional methods. To this end, this study aimed to identify the novel variants responsible for GPI deficiency in a Chinese family. METHODS: The clinical manifestations of the patient were summarized and analyzed for GPI deficiency phenotype diagnosis. Novel compound heterozygous variants of the GPI gene, c.174C>A (p.Asn58Lys) and c.1538G>T (p.Trp513Leu), were identified using whole-exome and Sanger sequencing. The AlphaFold program and Chimera software were used to analyze the effects of compound heterozygous variants on GPI structure. RESULTS: By characterizing 53 GPI missense/nonsense variants from previous literature and two novel missense variants identified in this study, we found that most variants were located in exons 3, 4, 12, and 18, with a few localized in exons 8, 9, and 14. This study identified novel compound heterozygous variants associated with GPI deficiency. These pathogenic variants disrupt hydrogen bonds formed by highly conserved GPI amino acids. CONCLUSION: Early family-based sequencing analyses, especially for patients with congenital anemia, can help increase diagnostic accuracy for GPI deficiency, improve child healthcare, and enable genetic counseling.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia Hemolítica , Criança , Humanos , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/química , Anemia Hemolítica/genética , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/genética , Mutação de Sentido Incorreto , Éxons
9.
Zool Res ; 45(2): 292-298, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485499

RESUMO

Mutations in mitochondrial DNA (mtDNA) are maternally inherited and have the potential to cause severe disorders. Mitochondrial replacement therapies, including spindle, polar body, and pronuclear transfers, are promising strategies for preventing the hereditary transmission of mtDNA diseases. While pronuclear transfer has been used to generate mitochondrial replacement mouse models and human embryos, its application in non-human primates has not been previously reported. In this study, we successfully generated four healthy cynomolgus monkeys ( Macaca fascicularis) via female pronuclear transfer. These individuals all survived for more than two years and exhibited minimal mtDNA carryover (3.8%-6.7%), as well as relatively stable mtDNA heteroplasmy dynamics during development. The successful establishment of this non-human primate model highlights the considerable potential of pronuclear transfer in reducing the risk of inherited mtDNA diseases and provides a valuable preclinical research model for advancing mitochondrial replacement therapies in humans.


Assuntos
Doenças Mitocondriais , Doenças dos Roedores , Camundongos , Humanos , Feminino , Animais , Doenças Mitocondriais/genética , Doenças Mitocondriais/prevenção & controle , Doenças Mitocondriais/veterinária , Haplorrinos/genética , Mitocôndrias/genética , DNA Mitocondrial/genética , Primatas/genética
10.
Sci Rep ; 14(1): 5582, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448540

RESUMO

This study presents a data-driven assisted real-time optimization model which is an innovative approach to address the challenges posed by integrating Submerged Arc Furnace (SAF) systems with renewable energy sources, specifically photovoltaic (PV) and wind power, with modern intelligent energy terminals. Specifically, the proposed method is divided into two stages. The first stage is related to data-driven prediction for addressing local time-varying renewable energy and electricity market prices with predicted information, and the second stage uses an optimization model for real-time SAF dispatch. Connections between intelligent energy terminals, demand-side devices, and load management systems are established to enhance local renewable resource utilization. Additionally, mathematical formulations of the operating resistance in SAF are explored, and deep neuron networks are employed and modified for dynamic uncertainty prediction. The proposed approach is validated through a case study involving an intelligent energy terminal with a 12.5 MVA SAF system and 12 MW capacity renewable generators in an electricity market with fluctuating prices. The findings of this research underscore the efficacy of the proposed optimization model in reducing operational costs and enhancing the utilization of localized renewable energy generation. By integrating four distinct dissatisfaction coefficients into the optimization framework, we demonstrate the model's adaptability and efficiency. The application of the optimization strategy delineated herein results in the SAF system's profitability oscillating between $111 and $416 across various time intervals, contingent upon the coefficient settings. Remarkably, an aggregate daily loss recovery amounting to $1,906.84 can be realized during the optimization period. Such outcomes not only signify considerable economic advantages but also contribute to grid stability and the diminution of renewable energy curtailment, thereby underscoring the dual benefits of economic efficiency and sustainability in energy management practices.

11.
BMC Urol ; 24(1): 47, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389059

RESUMO

BACKGROUND: Some studies have suggested that hepatitis B virus (HBV) infection had a negative association with semen quality, but the conclusions have been inconsistent. The purpose of our study was to systematically assess the association between HBV infection and semen parameters. METHODS: We searched electronic databases for studies published from January 1980 to August 2023. Eleven studies were included in the analysis. Primary outcomes were semen volume, sperm concentration, sperm morphology, sperm motility and sperm progressive motility. We also conducted a subgroup analysis between China and other countries. RESULT: Compared with the semen quality of HBV-negative men, HBV infection had a negative association with semen volume (MD: -0.20 mL, 95%CI: -0.32 to - 0.09, P = 0.0004), sperm concentration (MD: -4.46 × 106/mL, 95%CI: -7.09 to - 1.84, P = 0.0009), sperm morphology (MD: -2.49%, 95%CI: -4.35 to - 0.64, P = 0.008), sperm motility (MD: -6.85%, 95%CI: -11.53 to - 2.18, P = 0.004), and sperm progressive motility (MD: -6.63%, 95%CI: -10.24 to - 3.02, P = 0.0003). However, HBV infection had no significant association with total sperm count (MD: -31.50 × 106, 95%CI: -74.11 to 11.10, P = 0.15). The association between HBV and semen quality were inconsistent between the subgroups. CONCLUSION: HBV infection had a negative association with sperm concentration, motility, morphology, and semen volume. However, The association between HBV and total sperm count remain unclear. This metaanalysis suggests that we should pay attention to the adverse effect of HBV on sperm quality, and several studies have reported the relevant mechanisms. But due to the significant heterogeneity among studies on some semen parameters, further large and well-designed researches are needed before introducing clinical management recommendations.


Assuntos
Vírus da Hepatite B , Análise do Sêmen , Masculino , Humanos , Sêmen , Motilidade dos Espermatozoides , Contagem de Espermatozoides , Espermatozoides
12.
Talanta ; 271: 125754, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335846

RESUMO

Developing a simple, reliable, and sensitive hepatitis C virus (HCV) genetic sensing platform is of great significance for diagnosing diseases and selecting appropriate antiviral treatments. Herein, a tandem nucleic acid amplification strategy for sensitive detection of HCV genotype 1b (HCV-1b) was developed by stringing the catalytic hairpin assembly (CHA) and the triggered DNAzyme amplifier. The hairpin reactants were initiated by the target to produce lots of triggering double-stranded DNA sequences which can efficiently activate the subsequent blocked DNAzyme. Thereby, the continuous cleavage of substrate was realized, resulting in the fluorescence signal amplification. The DNA-based isothermal CHA-DNAzyme (CDz) sensing platform was successfully applied for sensitive detection of HCV-1b with the limit of detection (84 pM) and showed good selectivity. Moreover, the practical detection of target DNA in the complex biologic matrix indicated that the developing strategy had good potential for early HCV infection diagnosis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Hepatite C , Humanos , DNA Catalítico/genética , Hepacivirus/genética , Retroalimentação , Técnicas Biossensoriais/métodos , DNA/genética , Hepatite C/diagnóstico , Genótipo , Limite de Detecção
13.
Nat Commun ; 15(1): 1711, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402216

RESUMO

Acidic CO2 electroreduction (CO2R) using renewable electricity holds promise for high-efficiency generation of storable liquid chemicals with up to 100% CO2 utilization. However, the strong parasitic hydrogen evolution reaction (HER) limits its selectivity and energy efficiency (EE), especially at ampere-level current densities. Here we present that enhancing CO2R intermediate coverage on catalysts promotes CO2R and concurrently suppresses HER. We identified and engineered robust Cu6Sn5 catalysts with strong *OCHO affinity and weak *H binding, achieving 91% Faradaic efficiency (FE) for formic acid (FA) production at 1.2 A cm-2 and pH 1. Notably, the single-pass carbon efficiency reaches a new benchmark of 77.4% at 0.5 A cm-2 over 300 hours. In situ electrochemical Fourier-transform infrared spectroscopy revealed Cu6Sn5 enhances *OCHO coverage ~2.8× compared to Sn at pH 1. Using a cation-free, solid-state-electrolyte-based membrane-electrode-assembly, we produce 0.36 M pure FA at 88% FE over 130 hours with a marked full-cell EE of 37%.

14.
Langmuir ; 40(8): 4236-4244, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38364369

RESUMO

NiOx-based two-dimensional perovskite solar cells (2D-PSCs) have the advantages of low fabrication temperature, suitable energy level matching, suppressed hysteresis, and superior stability, while the poor interfacial contacts between NiOx and perovskite layers limit the perovskite film growth and charge transfer. Herein, a simple molecule, urea, was used as a molecular modifier to form bifacial passivation on the buried interface of NiOx/perovskite, resulting in better interfacial contact and efficient bifacial passivation. We demonstrated that efficient bifacial passivation mainly comes from strong interactions between urea and NiOx or perovskite, which make urea a molecular bridge for smoother charge transfer. Moreover, urea can regulate the ratio of Ni3+/Ni2+, therefore boosting the conductivity of NiOx, and adjust the morphology of the NiOx film for better 2D-perovskite crystal growth. Besides, urea also passivates the bifacial defect states of both NiOx and perovskite film, yielding reduced defect density of the perovskite film and superior charge transfer on the buried interface. Consequently, inverted 2D-PSCs with urea modification proved significant improvements in short-circuit current density and fill factor, resulting in improved power conversion efficiency from 14.64 to 16.84% with better stability in air.

15.
Nat Commun ; 15(1): 5, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228612

RESUMO

Somatic cell nuclear transfer (SCNT) successfully clones cynomolgus monkeys, but the efficiency remains low due to a limited understanding of the reprogramming mechanism. Notably, no rhesus monkey has been cloned through SCNT so far. Our study conducts a comparative analysis of multi-omics datasets, comparing embryos resulting from intracytoplasmic sperm injection (ICSI) with those from SCNT. Our findings reveal a widespread decrease in DNA methylation and the loss of imprinting in maternally imprinted genes within SCNT monkey blastocysts. This loss of imprinting persists in SCNT embryos cultured in-vitro until E17 and in full-term SCNT placentas. Additionally, histological examination of SCNT placentas shows noticeable hyperplasia and calcification. To address these defects, we develop a trophoblast replacement method, ultimately leading to the successful cloning of a healthy male rhesus monkey. These discoveries provide valuable insights into the reprogramming mechanism of monkey SCNT and introduce a promising strategy for primate cloning.


Assuntos
Técnicas de Transferência Nuclear , Sêmen , Gravidez , Animais , Feminino , Masculino , Trofoblastos , Clonagem de Organismos , Blastocisto , Reprogramação Celular/genética
16.
Int J Lab Hematol ; 46(3): 457-465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38212663

RESUMO

BACKGROUND: The MC-80 (Mindray, Shenzhen, China), a newly available artificial intelligence (AI)-based digital morphology analyzer, is the focus of this study. We aim to compare the leukocyte differential performance of the Mindray MC-80 with that of the Sysmex DI-60 and the gold standard, manual microscopy. METHODS: A total of 100 abnormal peripheral blood (PB) smears were compared across the MC-80, DI-60, and manual microscopy. Sensitivity, specificity, predictive value, and efficiency were calculated according to the Clinical and Laboratory Standards Institute (CLSI) EP12-A2 guidelines. Comparisons were made using Bland-Altman analysis and Passing-Bablok regression analysis. Additionally, within-run imprecision was evaluated using five samples, each with varying percentages of mature leukocytes and blasts, in accordance with CLSI EP05-A3 guidelines. RESULTS: The within-run coefficient of variation (%CV) of the MC-80 for most cell classes in the five samples was lower than that of the DI-60. Sensitivities for the MC-80 ranged from 98.2% for nucleated red blood cells (NRBC) to 28.6% for reactive lymphocytes. The DI-60's sensitivities varied between 100% for basophils and reactive lymphocytes, and 11.1% for metamyelocytes. Both analyzers demonstrated high specificity, negative predictive value, and efficiency, with over 90% for most cell classes. However, the DI-60 showed relatively lower specificity for lymphocytes (73.2%) and lower efficiency for blasts and lymphocytes (80.1% and 78.6%, respectively) compared with the MC-80. Bland-Altman analysis indicated that the absolute mean differences (%) ranged from 0.01 to 4.57 in MC-80 versus manual differential and 0.01 to 3.39 in DI-60 versus manual differential. After verification by technicians, both analyzers exhibited a very high correlation (r = 0.90-1.00) with the manual differential results in neutrophils, lymphocytes, and blasts. CONCLUSIONS: The Mindray MC-80 demonstrated good performance for leukocyte differential in PB smears, notably exhibiting higher sensitivity for blasts identification than the DI-60.


Assuntos
Leucócitos , Humanos , Leucócitos/patologia , Leucócitos/citologia , Sensibilidade e Especificidade , Neoplasias Hematológicas/sangue , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/patologia , Contagem de Leucócitos/instrumentação , Contagem de Leucócitos/métodos , Contagem de Leucócitos/normas , Feminino , Automação Laboratorial , Masculino , Reprodutibilidade dos Testes , Inteligência Artificial
18.
Cell Death Dis ; 15(1): 33, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212299

RESUMO

Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), and prolonged ER stress leads to cell apoptosis. Despite increasing research in this area, the underlying molecular mechanisms remain unclear. Here, we discover that ER stress upregulates the UPR signaling pathway while downregulating E2F target gene expression and inhibiting the G2/M phase transition. Prolonged ER stress decreases the mRNA levels of E2F2, which specifically regulates the expression of F-Box Protein 5(FBXO5), an F-box protein that functions as an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase complex. Depletion of FBXO5 results in increased ER stress-induced apoptosis and decreased expression of proteins related to PERK/IRE1α/ATF6 signaling. Overexpression of FBXO5 wild-type (not its ΔF-box mutant) alleviates apoptosis and the expression of the C/EBP Homologous Protein (CHOP)/ATF. Mechanistically, we find that FBXO5 directly binds to and promotes the ubiquitin-dependent degradation of RNF183, which acts as a ubiquitin E3 ligase in regulating ER stress-induced apoptosis. Reversal of the apoptosis defects caused by FBXO5 deficiency in colorectal cancer cells can be achieved by knocking down RNF183 in FBXO5-deficient cells. Functionally, we observed significant upregulation of FBXO5 in colon cancer tissues, and its silencing suppresses tumor occurrence in vivo. Therefore, our study highlights the critical role of the FBXO5/RNF183 axis in ER stress regulation and identifies a potential therapeutic target for colon cancer treatment.


Assuntos
Neoplasias do Colo , Proteínas F-Box , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/metabolismo , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Ubiquitina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias do Colo/genética , Apoptose/genética , Proteínas de Ciclo Celular/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Small ; 20(1): e2304463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649191

RESUMO

The high activity of water molecules results in a series of awful parasitic reaction, which seriously impede the development of aqueous zinc batteries. Herein, a new gel electrolyte with multiple molecular anchors is designed by employing natural biomaterials from chitosan and chlorophyll derivative. The gel electrolyte firmly anchors water molecules by ternary hydrogen bonding to reduce the activity of water molecules and inhibit hydrogen evolution reaction. Meanwhile, the multipolar charged functional groups realize the gradient induction and redistribution of Zn2+ , which drives oriented Zn (002) plane deposition of Zn2+ and then achieves uniform Zn deposition and dendrite-free anode. As a result, it endows the Zn||Zn cell with over 1700 h stripping/plating processes and a high efficiency of 99.4% for the Zn||Cu cell. In addition, the Zn||V2 O5 full cells also exhibit capacity retention of 81.7% after 600 cycles at 0.5 A g-1 and excellent long-term stability over 1600 cycles at 2 A g-1 , and the flexible pouch cells can provide stable power for light-emitting diodes even after repeated bending. The gel electrolyte strategy provides a reference for reversible zinc anode and flexible wearable devices.

20.
J Sci Food Agric ; 104(5): 2897-2906, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38018273

RESUMO

BACKGROUND: Highland hulless barley has garnered attention as a promising economic product and a potential healthy food ingredient. The present study aimed to comprehensively investigate the molecular structure of extractable fibers obtained from a specific highland hulless barley. Water-soluble fiber (WSF) and alkaline-soluble fiber (ASF) were extracted using enzymatic digestion and an alkaline method, respectively. The purified fibers underwent a thorough investigation for their structural characterization. RESULTS: The monosaccharide composition revealed that WSF primarily consisted of glucose (91.7%), whereas ASF was composed of arabinose (54.5%) and xylose (45.5%), indicating the presence of an arabinoxylan molecule with an A/X ratio of 1.2. The refined structural information was further confirmed through methylation, 1 H NMR and Fourier-transform infrared spectroscopy analyses. WSF fiber exclusively exhibited α-anomeric patterns, suggesting it was an α-glucan. It has a low molecular weight of 5 kDa, as determined by gel permeation chromatography. Conversely, ASF was identified as a heavily branched arabinoxylan with 41.55% of '→2,3,4)-Xylp-(1→' linkages. ASF and WSF exhibited notable differences in their morphology, water absorption capabilities and rheological properties. CONCLUSION: Based on these findings, molecular models of WSF and ASF were proposed. The deep characterization of these fiber structures provides valuable insights into their physicochemical and functional properties, thereby unlocking their potential applications in the food industry. © 2023 Society of Chemical Industry.


Assuntos
Hordeum , Hordeum/química , Glucanos/análise , Monossacarídeos , Indústria Alimentícia , Indústria de Processamento de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA