Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37645907

RESUMO

With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures important tissue heterogeneity, which make it impossible for proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single tissue voxel and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics. wcSOP capitalizes on buffer droplet-assisted wet collection of single tissue voxel dissected by LCM into the PCR tube cap and MS-compatible surfactant-assisted one-pot voxel processing in the collection cap. This convenient method allows reproducible label-free quantification of ∼900 and ∼4,600 proteins for single voxel from fresh frozen human spleen tissue at 20 µm × 20 µm × 10 µm (close to single cells) and 200 µm × 200 µm × 10 µm (∼100 cells), respectively. 100s-1000s of protein signatures with differential expression levels were identified to be spatially resolved between spleen red and white pulp regions depending on the voxel size. Region-specific signaling pathways were enriched from single voxel proteomics data. Antibody-based CODEX imaging was used to validate label-free MS quantitation for single voxel analysis. The wcSOP-MS method paves the way for routine robust single voxel proteomics and spatial proteomics.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37209992

RESUMO

BACKGROUND: Abundant evidence suggests that the prevalence and risk of depression in people with diabetes is high. However, the pathogenesis of diabetes-related depression remains unclear. Since neuroinflammation is associated with the pathophysiology of diabetic complications and depression, this study aims to elucidate the neuroimmune mechanism of diabetes-related depression. METHODS: Male C57BL/6 mice were injected with streptozotocin to establish a diabetes model. After screening, diabetic mice were treated with the NLRP3 inhibitor MCC950. Then, metabolic indicators and depression-like behaviors were evaluated in these mice, as well as their central and peripheral inflammation. To explore the mechanism of high glucose-induced microglial NLRP3 inflammasome activation, we performed in vitro studies focusing on its canonical upstream signal I (TLR4/MyD88/NF-κB) and signal II (ROS/PKR/P2X7R/TXNIP). RESULTS: Diabetic mice exhibited depression-like behaviors and activation of NLRP3 inflammasome in hippocampus. In vitro high-glucose (50 mM) environment primed microglial NLRP3 inflammasome by promoting NF-κB phosphorylation in a TLR4/MyD88-independent manner. Subsequently, high glucose activated the NLRP3 inflammasome via enhancing intracellular ROS accumulation, upregulating P2X7R, as well as promoting PKR phosphorylation and TXNIP expression, thereby facilitating the production and secretion of IL-1ß. Inhibition of NLRP3 with MCC950 significantly restored hyperglycemia-induced depression-like behavior and reversed the increase in IL-1ß levels in the hippocampus and serum. CONCLUSION: The activation of NLRP3 inflammasome, probably mainly in hippocampal microglia, mediates the development of depression-like behaviors in STZ-induced diabetic mice. Targeting the microglial inflammasome is a feasible strategy for the treatment of diabetes-related depression.


Assuntos
Diabetes Mellitus Experimental , Inflamassomos , Animais , Masculino , Camundongos , Depressão/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Glucose , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo
3.
ChemSusChem ; 16(6): e202202001, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36527279

RESUMO

Efficient cleavage of ß-O-4 bonds in lignin to high-yield aromatic compounds for the potential production of fuels and chemicals is vital for the economics of the modern biorefinery industry. This work is distinct in that a detailed mechanistic analysis of the reaction pathways of veratrylglycero-ß-guaiacyl ether (VGE) catalyzed by transition-metal-free solid acid zeolite in aqueous conditions at high hydrogen pressure has been performed. VGE degradation produced high monomers yields (≈87 %), including guaiacol (48.2 %), 1-(3,4-dimethoxyphenyl)ethanol (10.3 %), 1-(3,4-dimethoxyphenyl)-2-propanol (6.1 %), 3,4-dimethoxyphenylpropanol (4.7 %), 3,4-dimethoxycinnamyl alcohol (4.1 %), and 1,2-dimethoxy-4-propylbenzene (2 %). The products were identified and confirmed by the in situ solid-state magic angle spinning (MAS) 13 C NMR spectroscopy in real-time conditions and the two-dimensional gas chromatography (GC×GC). A variety of products reveal the crucial role of hydrogen, water, and acid sites for heterolytic cleavage of the ß-O-4 bond in VGE. Decarbonylation, hydrogenolysis, hydrogenation, and dehydration reaction pathways are proposed and further validated using first-principles calculations.

4.
Biotechnol Biofuels Bioprod ; 15(1): 117, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316752

RESUMO

BACKGROUND: Bacterial lignin degradation is believed to be primarily achieved by a secreted enzyme system. Effects of such extracellular enzyme systems on lignin structural changes and degradation pathways are still not clearly understood, which remains as a bottleneck in the bacterial lignin bioconversion process. RESULTS: This study investigated lignin degradation using an isolated secretome secreted by Pseudomonas putida KT2440 that grew on glucose as the only carbon source. Enzyme assays revealed that the secretome harbored oxidase and peroxidase/Mn2+-peroxidase capacity and reached the highest activity at 120 h of the fermentation time. The degradation rate of alkali lignin was found to be only 8.1% by oxidases, but increased to 14.5% with the activation of peroxidase/Mn2+-peroxidase. Gas chromatography-mass spectrometry (GC-MS) and two-dimensional 1H-13C heteronuclear single-quantum coherence (HSQC) NMR analysis revealed that the oxidases exhibited strong C-C bond (ß-ß, ß-5, and ß-1) cleavage. The activation of peroxidases enhanced lignin degradation by stimulating C-O bond (ß-O-4) cleavage, resulting in increased yields of aromatic monomers and dimers. Further mass spectrometry-based quantitative proteomics measurements comprehensively identified different groups of enzymes particularly oxidoreductases in P. putida secretome, including reductases, peroxidases, monooxygenases, dioxygenases, oxidases, and dehydrogenases, potentially contributed to the lignin degradation process. CONCLUSIONS: Overall, we discovered that bacterial extracellular degradation of alkali lignin to vanillin, vanillic acid, and other lignin-derived aromatics involved a series of oxidative cleavage, catalyzed by active DyP-type peroxidase, multicopper oxidase, and other accessory enzymes. These results will guide further metabolic engineering design to improve the efficiency of lignin bioconversion.

5.
Biotechnol Biofuels ; 14(1): 11, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413621

RESUMO

BACKGROUND: Efficient utilization of all available carbons from lignocellulosic biomass is critical for economic efficiency of a bioconversion process to produce renewable bioproducts. However, the metabolic responses that enable Pseudomonas putida to utilize mixed carbon sources to generate reducing power and polyhydroxyalkanoate (PHA) remain unclear. Previous research has mainly focused on different fermentation strategies, including the sequential feeding of xylose as the growth stage substrate and octanoic acid as the PHA-producing substrate, feeding glycerol as the sole carbon substrate, and co-feeding of lignin and glucose. This study developed a new strategy-co-feeding glycerol and lignin derivatives such as benzoate, vanillin, and vanillic acid in Pseudomonas putida KT2440-for the first time, which simultaneously improved both cell biomass and PHA production. RESULTS: Co-feeding lignin derivatives (i.e. benzoate, vanillin, and vanillic acid) and glycerol to P. putida KT2440 was shown for the first time to simultaneously increase cell dry weight (CDW) by 9.4-16.1% and PHA content by 29.0-63.2%, respectively, compared with feeding glycerol alone. GC-MS results revealed that the addition of lignin derivatives to glycerol decreased the distribution of long-chain monomers (C10 and C12) by 0.4-4.4% and increased the distribution of short-chain monomers (C6 and C8) by 0.8-3.5%. The 1H-13C HMBC, 1H-13C HSQC, and 1H-1H COSY NMR analysis confirmed that the PHA monomers (C6-C14) were produced when glycerol was fed to the bacteria alone or together with lignin derivatives. Moreover, investigation of the glycerol/benzoate/nitrogen ratios showed that benzoate acted as an independent factor in PHA synthesis. Furthermore, 1H, 13C and 31P NMR metabolite analysis and mass spectrometry-based quantitative proteomics measurements suggested that the addition of benzoate stimulated oxidative-stress responses, enhanced glycerol consumption, and altered the intracellular NAD+/NADH and NADPH/NADP+ ratios by up-regulating the proteins involved in energy generation and storage processes, including the Entner-Doudoroff (ED) pathway, the reductive TCA route, trehalose degradation, fatty acid ß-oxidation, and PHA biosynthesis. CONCLUSIONS: This work demonstrated an effective co-carbon feeding strategy to improve PHA content/yield and convert lignin derivatives into value-added products in P. putida KT2440. Co-feeding lignin break-down products with other carbon sources, such as glycerol, has been demonstrated as an efficient way to utilize biomass to increase PHA production in P. putida KT2440. Moreover, the involvement of aromatic degradation favours further lignin utilization, and the combination of proteomics and metabolomics with NMR sheds light on the metabolic and regulatory mechanisms for cellular redox balance and potential genetic targets for a higher biomass carbon conversion efficiency.

6.
Biotechnol Biofuels ; 12: 60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923568

RESUMO

BACKGROUND: Biological routes for utilizing both carbohydrates and lignin are important to reach the ultimate goal of bioconversion of full carbon in biomass into biofuels and biochemicals. Recent biotechnology advances have shown promises toward facilitating biological transformation of lignin into lipids. Natural and engineered Rhodococcus strains (e.g., R. opacus PD630, R. jostii RHA1, and R. jostii RHA1 VanA-) have been demonstrated to utilize lignin for lipid production, and co-culture of them can promote lipid production from lignin. RESULTS: In this study, a co-fermentation module of natural and engineered Rhodococcus strains with significant improved lignin degradation and/or lipid biosynthesis capacities was established, which enabled simultaneous conversion of glucose, lignin, and its derivatives into lipids. Although Rhodococci sp. showed preference to glucose over lignin, nearly half of the lignin was quickly depolymerized to monomers by these strains for cell growth and lipid synthesis after glucose was nearly consumed up. Profiles of metabolites produced by Rhodococcus strains growing on different carbon sources (e.g., glucose, alkali lignin, and dilute acid flowthrough-pretreated poplar wood slurry) confirmed lignin conversion during co-fermentation, and indicated novel metabolic capacities and unexplored metabolic pathways in these organisms. Proteome profiles suggested that lignin depolymerization by Rhodococci sp. involved multiple peroxidases with accessory oxidases. Besides the ß-ketoadipate pathway, the phenylacetic acid (PAA) pathway was another potential route for the in vivo ring cleavage activity. In addition, deficiency of reducing power and cellular oxidative stress probably led to lower lipid production using lignin as the sole carbon source than that using glucose. CONCLUSIONS: This work demonstrated a potential strategy for efficient bioconversion of both lignin and glucose into lipids by co-culture of multiple natural and engineered Rhodococcus strains. In addition, the involvement of PAA pathway in lignin degradation can help to further improve lignin utilization, and the combinatory proteomics and bioinformatics strategies used in this study can also be applied into other systems to reveal the metabolic and regulatory pathways for balanced cellular metabolism and to select genetic targets for efficient conversion of both lignin and carbohydrates into biofuels.

7.
Bioresour Technol ; 273: 538-544, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30472353

RESUMO

Nitrogen supply is critical to the synthesis of intracellular PHA in various bacteria. However, the specific role of the nitrogen in synthesizing PHA from benzoate, a lignin model compound use for the study of bacteria catabolism of aromatics, is still not clear. In this study, two culture conditions were maintained for Pseudomonas putida KT2440 to produce PHA using benzoate as a carbon source. Under nitrogen-limited and surplus conditions, the accumulation of PHA was to 37.3% and 0.25% of cell dry weight, respectively. A model fit to the kinetics of biomass growth and PHA accumulation showed good agreement with data. GC-MS and NMR showed that PHA contained six hydroxyl fatty acid monomers under nitrogen-limited conditions, while two monomers were identified under nitrogen surplus conditions. The average molecular weight of PHA increased after the nitrogen source was exhausted. These results provide a promising strategy for optimization of lignin to PHA yields.


Assuntos
Benzoatos/metabolismo , Nitrogênio/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas putida/metabolismo , Biomassa , Carbono/metabolismo , Ácidos Graxos/metabolismo , Cinética
8.
Bioprocess Biosyst Eng ; 41(1): 135-141, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29018957

RESUMO

Ganoderma lucidum is a traditional Chinese medicine, and its polysaccharides possess diverse and significant pharmacological activities. This study aimed to investigate the polysaccharide production, molecular characteristics and in-vitro antioxidant activity of G. lucidum fruiting body after the mushroom was harvested and treated with heat stress (HS). HS enhanced the production of polysaccharides after harvest and treatment of 42 °C HS for 2 h, and that resulted in the highest polysaccharide yield of 10.50%, which was 45.63% higher than that of the control, while 37, 45 °C HS had no significant effect on the production. In terms of molecular characteristics, 42 °C HS significantly changed monosaccharide ratio of polysaccharides, but no apparent molecular weight and functional group changes were found in polysaccharides after HS treatment. The results of in-vitro antioxidant activity assay revealed that 42 °C HS significantly improved the antioxidant activities of polysaccharides at the concentration of 2 mg/mL. In conclusion, this study provides a promising strategy to improve the production of G. lucidum fruiting body polysaccharides.


Assuntos
Antioxidantes/metabolismo , Carpóforos/metabolismo , Polissacarídeos Fúngicos/biossíntese , Resposta ao Choque Térmico/fisiologia , Reishi/metabolismo
9.
PLoS One ; 12(1): e0169042, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28056060

RESUMO

Ganoderma lucidum is a typical polypore fungus used for traditional Chinese medical purposes. The taxonomic delimitation of Ganoderma lucidum is still debated. In this study, we sequenced seven internal transcribed spacer (ITS) sequences of Ganoderma lucidum strains and annotated the ITS1 and ITS2 regions. Phylogenetic analysis of ITS1 differentiated the strains into three geographic groups. Groups 1-3 were originated from Europe, tropical Asia, and eastern Asia, respectively. While ITS2 could only differentiate the strains into two groups in which Group 2 originated from tropical Asia gathered with Groups 1 and 3 originated from Europe and eastern Asia. By determining the secondary structures of the ITS1 sequences, these three groups exhibited similar structures with a conserved central core and differed helices. While compared to Group 2, Groups 1 and 3 of ITS2 sequences shared similar structures with the difference in helix 4. Large-scale evaluation of ITS1 and ITS2 both exhibited that the majority of subgroups in the same group shared the similar structures. Further Weblogo analysis of ITS1 sequences revealed two main variable regions located in helix 2 in which C/T or A/G substitutions frequently occurred and ITS1 exhibited more nucleotide variances compared to ITS2. ITS1 multi-alignment of seven spawn strains and culture tests indicated that a single-nucleotide polymorphism (SNP) site at position 180 correlated with strain antagonism. The HZ, TK and 203 fusion strains of Ganoderma lucidum had a T at position 180, whereas other strains exhibiting antagonism, including DB, RB, JQ, and YS, had a C. Taken together, compared to ITS2 region, ITS1 region could differentiated Ganoderma lucidum into three geographic originations based on phylogenetic analysis and secondary structure prediction. Besides, a SNP in ITS 1 could delineate Ganoderma lucidum strains at the intraspecific level. These findings will be implemented to improve species quality control in the Ganoderma industry.


Assuntos
DNA Espaçador Ribossômico/genética , Reishi/genética , Evolução Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA