Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891238

RESUMO

MicroRNAs (miRNAs) are pivotal regulators of gene expression, playing crucial roles in plant developmental processes and environmental responses. However, the function of miRNAs in influencing deciduous traits has been little explored. Here, we utilized sRNA-seq on two deciduous species, Ilex polyneura (Hand.-Mazz.) S. Y. Hu and Ilex asprella Champ. ex Benth., along with an evergreen species, Ilex latifolia Thunb., to identify and annotate miRNAs within these species. Our analysis revealed 162 species-specific miRNAs (termed SS-miRNAs) from 120 families, underscoring the fundamental roles and potential influence of SS-miRNAs on plant phenotypic diversity and adaptation. Notably, three SS-miRNAs in I. latifolia were found to target crucial genes within the abscission signaling pathway. Analysis of cis-regulatory elements suggested a novel regulatory relationship that may contribute to the evergreen phenotype of I. latifolia by modulating the abscission process in a light-independent manner. These findings propose a potential mechanism by which SS-miRNAs can influence the conserved abscission pathway, contributing to the phenotypic divergence between deciduous and evergreen species within the genus Ilex.

3.
Artigo em Inglês | MEDLINE | ID: mdl-15599045

RESUMO

The starchy endosperm of wheat underwent programmed cell death (PCD) during its development. It showed a ladder of DNA fragments in multiples of 180-200 bp at specific stages when analyzed by agarose gel electrophoresis. The onset of internucleosomal fragmentation of the genome in wheat endosperm could be accelerated by ethylene. While treatment with abscisic acid (ABA) did not delay the onset of DNA fragmentation, but reduced its extent in developing wheat endosperm. During PCD, beside some ultrastructural changes common to other animal and plant apoptotic cells, the starchy endosperm cells also showed some peculiar ultrastructural features. For example, the chromatins in the nucleoplasm were densely aggregated, only a few condensed chromatins abutted onto the inner surface of the nuclear envelope; the nucleus was the first to suffer from degeneration; during nuclear disintegration a large number of organelles could still be observed in the cytoplasm; after nuclear disintegration, the cell remained alive, and synthesis and accumulation of starches and proteins were carried out as usual in the cytoplasm until the starchy endosperm cell died when it was filled with reserves; no formation of apoptotic bodies could be found and the dead starchy endosperm cell served as a reservoir. The PCD of starchy endosperm cells in wheat was a special form of PCD.


Assuntos
Apoptose , Triticum/embriologia , Ácido Abscísico/farmacologia , Fragmentação do DNA , Etilenos/farmacologia , Triticum/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA