Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Traffic Inj Prev ; 25(4): 649-657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578258

RESUMO

OBJECTIVE: With the development of intelligent driving assistance systems, the evaluation of driving behavior risk has shifted from traditional single-vehicle studies to multi-vehicle studies. This study aimed to investigate the interaction mechanism between vehicles and to study the microscopic laws of traffic flow operation. METHODS: Firstly, the concept of "driving interaction field" was proposed. The virtual interaction quality and distance were used to define the driving interaction field. The interaction angle distinguished the vehicle interaction between different lanes. Then, the risk mechanism in the interaction process was analyzed by driving risk index. Corresponding thresholds of 50% and 85% quantile values were determined. Finally, the process of the lane-changing simulation experiments was divided into three phases (preparation, execution and adjustment). RESULTS: The driving risk index of the execution phase was larger than the other phases. Meanwhile, the comparison with the classical driving risk indexes revealed that the proposed index was more accurate and intuitive in describing the interaction risks. CONCLUSIONS: The driving interaction model proposed in this study quantified the overall environmental pressure on the vehicle. It overcomes the previous limitation of kinetic interaction parameters. The research provides a new idea for the ITS and autonomous driving systems, contributing to the enhancement of traffic safety and efficiency.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Humanos , Simulação por Computador , Assunção de Riscos
2.
Artigo em Inglês | MEDLINE | ID: mdl-36833756

RESUMO

Nowadays, conditional automated driving vehicles still need drivers to take-over in the scenarios such as emergency hazard events or driving environments beyond the system's control. This study aimed to explore the changing trend of the drivers' takeover behavior under the influence of traffic density and take-over budget time for the entire take-over process in emergency obstacle avoidance scenarios. In the driving simulator, a 2 × 2 factorial design was adopted, including two traffic densities (high density and low density) and two kinds of take-over budget time (3 s and 5 s). A total of 40 drivers were recruited, and each driver was required to complete four simulation experiments. The driver's take-over process was divided into three phases, including the reaction phase, control phase, and recovery phase. Time parameters, dynamics parameters, and operation parameters were collected for each take-over phase in different obstacle avoidance scenarios. This study analyzed the variability of traffic density and take-over budget time with take-over time, lateral behavior, and longitudinal behavior. The results showed that in the reaction phase, the driver's reaction time became shorter as the scenario urgency increased. In the control phase, the steering wheel reversal rate, lateral deviation rate, braking rate, average speed, and takeover time were significantly different at different urgency levels. In the recovery phase, the average speed, accelerating rate, and take-over time differed significantly at different urgency levels. For the entire take-over process, the entire take-over time increased with the increase in urgency. The lateral take-over behavior tended to be aggressive first and then became defensive, and the longitudinal take-over behavior was defensive with the increase in urgency. The findings will provide theoretical and methodological support for the improvement of take-over behavior assistance in emergency take-over scenarios. It will also be helpful to optimize the human-machine interaction system.


Assuntos
Condução de Veículo , Aprendizagem da Esquiva , Humanos , Tempo de Reação , Simulação por Computador , Agressão , Acidentes de Trânsito
3.
Artigo em Inglês | MEDLINE | ID: mdl-36833757

RESUMO

This paper models and mitigates the secondary crash (SC) risk for serial tunnels on the freeway which is incurred by traffic turbulence after primary crash (PC) occurrence and location-heterogeneous lighting conditions along serial tunnels. A traffic conflict approach is developed where SC risk is quantified using a surrogate safety measure based on the simulated vehicle trajectories after PC occurs from a lighting-related microscopic traffic model with inter-lane dependency. Numerical examples are presented to validate the model, illustrate SC risk pattern over time, and evaluate the countermeasures for SC, including adaptive tunnel lighting control (ATLC) and advanced speed and lane-changing guidance (ASLG) for connected vehicles (CVs). The results demonstrate that the tail of the stretching queue on the PC occurrence lane, the adjacent lane of the PC-incurred queue, and areas near tunnel portals are high-risk locations. In serial tunnels, creating a good lighting condition for drivers is more effective than advanced warnings in CVs to mitigate SC risk. Combined ATLC and ASLG is promising since ASLG informs CVs of an immediate response to traffic turbulence on the lane where PC occurs and ATLC alleviates SC risks on adjacent lanes via smoothing the lighting condition variations and reducing inter-lane dependency.


Assuntos
Condução de Veículo , Acidentes de Trânsito , Iluminação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA