Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(44): 16185-16190, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34723297

RESUMO

Large-scale application of rechargeable Zn-air batteries requires low-cost electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as alternatives to noble metals. Herein, FeCo nanoparticles embedded in N-doped carbon (FeCo/N-C) were prepared by a two-step pyrolysis route. FeCo/N-C exhibits excellent activities toward both the ORR (half-wave potential of 0.84 V) and OER (overpotential of 345 mV at 10 mA cm-2), which are comparable to those of commercial Pt/C and RuO2, and by far exceeding their counterparts Fe/N-C and Co/N-C. Furthermore, the FeCo/N-C catalyst was evaluated in a rechargeable Zn-air battery for the full-cell test. The FeCo/N-C based battery is more durable with a smaller round-trip overpotential after 800 cycles than the battery using an expensive Pt/C + RuO2 mixture catalyst.

2.
Dalton Trans ; 48(25): 9310-9316, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31166332

RESUMO

Coupling semiconducting metal-organic frameworks (MOFs) with metal oxide (MO) semiconductor nanowires is an efficient solution to tune the photoelectric properties of both the parties. In this report, we demonstrate a facile surfactant-free growth strategy for modification of zinc oxide (ZnO) single-crystal nanowire arrays (NWAs) with the MOF zinc glycolate (noted as Zn-GA) that contains an embedded continuous 3D Zn-O network. Due to the structural resemblance of the Zn-O network between Zn-GA and ZnO, the prepared ZnO@Zn-GA nanowires present a tight contact at the core-shell interface in a partially epitaxial manner, and the loading amount of Zn-GA can be well controlled in the synthetic process. The inherent p-type Zn-GA in combination with the widely available n-type ZnO assures the construction of tandem n-p heterojunctions at the core-shell interface, which is confirmed by Mott-Schottky analysis. By implementation of the ZnO@Zn-GA NWAs as photoanodes for photoelectrochemical oxidation of water and oxalic acid, improved photocurrent responses are obtained relative to the primary ZnO NWAs. The most significant photoresponse is observed in the ZnO nanowires shelled by a compact Zn-GA particulate thin film with the largest junction region. These results are elucidated by the enhanced spatial separation efficiency of photogenerated charge carriers, which is favored by the built-in electric field at the interface of the n-p heterojunctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA