Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Epidemiol ; 8: 100156, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39104369

RESUMO

Uncovering the root causes of complex diseases requires complex approaches, yet many studies continue to isolate the effects of genetic and social determinants of disease. Epidemiologic efforts that under-utilize genetic epidemiology methods and findings may lead to incomplete understanding of disease. Meanwhile, genetic epidemiology studies are often conducted without consideration of social and environmental context, limiting the public health impact of genomic discoveries. This divide endures despite shared goals and increases in interdisciplinary data due to a lack of shared theoretical frameworks and differing language. Here, we demonstrate that bridging epidemiological divides does not require entirely new ways of thinking. Existing social epidemiology frameworks including Ecosocial theory and Fundamental Cause Theory, can both be extended to incorporate principles from genetic epidemiology. We show that genetic epidemiology can strengthen, rather than detract from, efforts to understand the impact of social determinants of health. In addition to presenting theoretical synergies, we offer practical examples of how genetics can improve the public health impact of epidemiology studies across the field. Ultimately, we aim to provide a guiding framework for trainees and established epidemiologists to think about diseases and complex systems and foster more fruitful collaboration between genetic and traditional epidemiological disciplines.

2.
Alzheimers Dement (N Y) ; 10(1): e12462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500778

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is a complex disease influenced by genetics and environment. More than 75 susceptibility loci have been linked to late-onset AD, but most of these loci were discovered in genome-wide association studies (GWAS) exclusive to non-Hispanic White individuals. There are wide disparities in AD risk across racially stratified groups, and while these disparities are not due to genetic differences, underrepresentation in genetic research can further exacerbate and contribute to their persistence. We investigated the racial/ethnic representation of participants in United States (US)-based AD genetics and the statistical implications of current representation. METHODS: We compared racial/ethnic data of participants from array and sequencing studies in US AD genetics databases, including National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) and NIAGADS Data Sharing Service (dssNIAGADS), to AD and related dementia (ADRD) prevalence and mortality. We then simulated the statistical power of these datasets to identify risk variants from non-White populations. RESULTS: There is insufficient statistical power (probability <80%) to detect single nucleotide polymorphisms (SNPs) with low to moderate effect sizes (odds ratio [OR]<1.5) using array data from Black and Hispanic participants; studies of Asian participants are not powered to detect variants OR <= 2. Using available and projected sequencing data from Black and Hispanic participants, risk variants with OR = 1.2 are detectable at high allele frequencies. Sample sizes remain insufficiently powered to detect these variants in Asian populations. DISCUSSION: AD genetics datasets are largely representative of US ADRD burden. However, there is a wide discrepancy between proportional representation and statistically meaningful representation. Most variation identified in GWAS of non-Hispanic White individuals have low to moderate effects. Comparable risk variants in non-White populations are not detectable given current sample sizes, which could lead to disparities in future studies and drug development. We urge AD genetics researchers and institutions to continue investing in recruiting diverse participants and use community-based participatory research practices.

3.
J Am Soc Nephrol ; 33(1): 77-87, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670813

RESUMO

BACKGROUND: Admixture mapping is a powerful approach for gene mapping of complex traits that leverages the diverse genetic ancestry in populations with recent admixture, such as Hispanic or Latino individuals in the United States. These individuals have an increased risk of CKD. METHODS: We performed genome-wide admixture mapping for both CKD and eGFR in a sample of 12,601 participants from the Hispanic Community Health Study/Study of Latinos, with validation in a sample of 8191 Black participants from the Women's Health Initiative (WHI). We also compared the findings with those from a conventional genome-wide association study. RESULTS: Three novel ancestry-of-origin loci were identified on chromosomes 2, 14, and 15 for CKD and eGFR. The chromosome 2 locus comprises two European ancestry regions encompassing the FSHR and NRXN1 genes, with European ancestry at this locus associated with increased CKD risk. The chromosome 14 locus, found within the DLK1-DIO3 imprinted domain, was associated with lower eGFR and driven by European ancestry. The eGFR-associated locus on chromosome 15 included intronic variants of RYR3 and was within an African-specific genomic region associated with higher eGFR. The genome-wide association study failed to identify significant associations in these regions. We validated the chromosome 14 and 15 loci associated with eGFR in the WHI Black participants. CONCLUSIONS: This study provides evidence of shared ancestry-specific genomic regions influencing eGFR in Hispanic or Latino individuals and Black individuals and illustrates the potential for leveraging genetic ancestry in recently admixed populations for the discovery of novel candidate loci for kidney phenotypes.


Assuntos
Negro ou Afro-Americano/genética , Loci Gênicos/genética , Taxa de Filtração Glomerular/genética , Hispânico ou Latino/genética , Insuficiência Renal Crônica/genética , População Branca/genética , Adulto , Mapeamento Cromossômico , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos
4.
Alzheimers Res Ther ; 13(1): 122, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217363

RESUMO

BACKGROUND: Genetic studies have primarily been conducted in European ancestry populations, identifying dozens of loci associated with late-onset Alzheimer's disease (AD). However, much of AD's heritability remains unexplained; as the prevalence of AD varies across populations, the genetic architecture of the disease may also vary by population with the presence of novel variants or loci. METHODS: We conducted genome-wide analyses of AD in a sample of 2565 Caribbean Hispanics to better understand the genetic contribution to AD in this population. Statistical analysis included both admixture mapping and association testing. Evidence for differential gene expression within regions of interest was collected from independent transcriptomic studies comparing AD cases and controls in samples with primarily European ancestry. RESULTS: Our genome-wide association study of AD identified no loci reaching genome-wide significance. However, a genome-wide admixture mapping analysis that tests for association between a haplotype's ancestral origin and AD status detected a genome-wide significant association with chromosome 3q13.11 (103.7-107.7Mb, P = 8.76E-07), driven by a protective effect conferred by the Native American ancestry (OR = 0.58, 95%CI = 0.47-0.73). Within this region, two variants were significantly associated with AD after accounting for the number of independent tests (rs12494162, P = 2.33E-06; rs1731642, P = 6.36E-05). The significant admixture mapping signal is composed of 15 haplotype blocks spanning 5 protein-coding genes (ALCAM, BBX, CBLB, CCDC54, CD47) and four brain-derived topologically associated domains, and includes markers significantly associated with the expression of ALCAM, BBX, CBLB, and CD47 in the brain. ALCAM and BBX were also significantly differentially expressed in the brain between AD cases and controls with European ancestry. CONCLUSION: These results provide multiethnic evidence for a relationship between AD and multiple genes at 3q13.11 and illustrate the utility of leveraging genetic ancestry diversity via admixture mapping for new insights into AD.


Assuntos
Doença de Alzheimer , Cromossomos Humanos Par 3 , Estudo de Associação Genômica Ampla , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Região do Caribe , Cromossomos Humanos Par 3/genética , Predisposição Genética para Doença , Hispânico ou Latino/genética , Humanos , Polimorfismo de Nucleotídeo Único , População Branca/genética , Indígena Americano ou Nativo do Alasca
5.
Alzheimers Dement (Amst) ; 13(1): e12255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35005195

RESUMO

INTRODUCTION: Genes implicated by genome-wide association studies and family-based studies of Alzheimer's disease (AD) are largely discordant. We hypothesized that genes identified by sequencing studies like the Alzheimer's Disease Sequencing Project (ADSP) may bridge this gap and highlight shared biological mechanisms. METHODS: We performed structured literature review of genes prioritized by ADSP studies, genes underlying familial dementias, and genes nominated by genome-wide association studies. Gene set enrichment analyses of each list identified enriched pathways. RESULTS: The genes prioritized by the ADSP, familial dementia studies, and genome-wide association studies minimally overlapped. Each gene set identified dozens of enriched pathways, several of which were shared (e.g., regulation of amyloid beta clearance). DISCUSSION: Alternative study designs provide unique insights into AD genetics. Shared pathways enriched by different genes highlight their relevance to AD pathogenesis, while the patterns of pathway enrichment unique to each gene set provide additional targets for functional studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA