Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16142, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752232

RESUMO

Traumatic brain injury (TBI) results in activated microglia. Activated microglia can be measured in vivo by using positron emission topography (PET) ligand peripheral benzodiazepine receptor standardized uptake values (PBR28suv). Cell based therapies have utilized autologous bone marrow mononuclear cells (BMMNCs) to attenuate activated microglia after TBI. This study aims to utilize in vivo PBR28suv to assess the efficacy of BMMNCs therapy after TBI. Seventy-two hours after CCI injury, BMMNCs were harvested from the tibia and injected via tail-vein at 74 h after injury at a concentration of 2 million cells per kilogram of body weight. There were three groups of rats: Sham, CCI-alone and CCI-BMMNCs (AUTO). One hundred twenty days after injury, rodents were imaged with PBR28 and their cognitive behavior assessed utilizing the Morris Water Maze. Subsequent ex vivo analysis included brain volume and immunohistochemistry. BMMNCs therapy attenuated PBR28suv in comparison to CCI alone and it improved spatial learning as measured by the Morris Water Maze. Ex vivo analysis demonstrated preservation of brain volume, a decrease in amoeboid-shaped microglia in the dentate gyrus and an increase in the ratio of ramified to amoeboid microglia in the thalamus. PBR28suv is a viable option to measure efficacy of BMMNCs therapy after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Microglia , Animais , Ratos , Medula Óssea , Elétrons , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Tomografia por Emissão de Pósitrons
2.
FASEB J ; 36(11): e22613, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36250916

RESUMO

Intestinal failure (IF) occurs when intestinal surface area or function is not sufficient to support digestion and nutrient absorption. Human intestinal organoid (HIO)-derived tissue-engineered intestine is a potential cure for IF. Research to date has demonstrated successful HIO transplantation (tHIO) into mice with significant in vivo maturation. An area lacking in the literature is exploration of murine host sex as a biological variable (SABV) in tHIO function. In this study, we investigate murine host SABV in tHIO epithelial barrier function and muscle contractility. HIOs were generated in vitro and transplanted into nonobese diabetic, severe combined immunodeficiency gamma chain deficient male and female mice. tHIOs were harvested after 8-12 weeks in vivo. Reverse transcriptase polymerase chain reaction and immunohistochemistry were conducted to compare tight junctions and contractility-related markers in tHIOs. An Ussing chamber and contractility apparatus were used to evaluate tHIO epithelial barrier and muscle contractile function, respectively. The expression and morphology of tight junction and contractility-related markers from tHIOs in male and female murine hosts is not significantly different. Epithelial barrier function as measured by transepithelial resistance, short circuit current, and fluorescein isothiocyanate-dextran permeability is no different in tHIOs from male and female hosts, although these results may be limited by HIO epithelial immaturity and a short flux time. Muscle contractility as measured by total contractile activity, amplitude, frequency, and tension is not significantly different in tHIOs from male and female hosts. The data suggest that murine host sex may not be a significant biological variable influencing tHIO function, specifically epithelial barrier maintenance and muscle contractility, though limitations exist in our model.


Assuntos
Dextranos , Organoides , Animais , Dextranos/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Masculino , Camundongos , Músculos/metabolismo , Organoides/metabolismo , Permeabilidade , Junções Íntimas/metabolismo
3.
PLoS One ; 16(5): e0251601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038436

RESUMO

Traumatic brain injury (TBI) causes both physical disruption of the blood brain barrier (BBB) and altered immune responses that can lead to significant secondary brain injury and chronic inflammation within the central nervous system (CNS). Cell therapies, including mesenchymal stromal cells (MSC), have been shown to restore BBB integrity and augment endogenous splenic regulatory T cells (Treg), a subset of CD4+ T cells that function to regulate immune responses and prevent autoimmunity. We have recently shown that infusion of human cord blood-derived Treg decreased neuroinflammation after TBI in vivo and in vitro. However, while both cells have demonstrated anti-inflammatory and regenerative potential, they likely utilize differing, although potentially overlapping, mechanisms. Furthermore, studies investigating these two cell types together, as a combination therapy, are lacking. In this study, we compared the ability of Treg+MSC combination therapy, as well as MSC and Treg monotherapies, to improve BBB permeability in vivo and suppress inflammation in vitro. While Treg+MSC combination did not significantly augment potency in vivo, our in vitro data demonstrates that combination therapy may augment therapeutic potency and immunosuppressive potential compared to Treg or MSC monotherapy.


Assuntos
Barreira Hematoencefálica/imunologia , Lesões Encefálicas Traumáticas , Tolerância Imunológica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Linfócitos T Reguladores , Animais , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/terapia , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante
4.
Stem Cells ; 39(3): 358-370, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33368792

RESUMO

The inflammatory response after traumatic brain injury (TBI) can lead to significant secondary brain injury and chronic inflammation within the central nervous system. Cell therapies, including mesenchymal stromal cells (MSC), have led to improvements in animal models of TBI and are under investigation in human trials. One potential mechanism for the therapeutic potential of MSC is their ability to augment the endogenous response of immune suppressive regulatory T cells (Treg). We have recently shown that infusion of human cord blood Treg decreased chronic microgliosis after TBI and altered the systemic immune response in a rodent model. These cells likely use both overlapping and distinct mechanisms to modulate the immune system; therefore, combining Treg and MSC as a combination therapy may confer therapeutic benefit over either monotherapy. However, investigation of Treg + MSC combination therapy in TBI is lacking. In this study, we compared the ability MSC + Treg combination therapy, as well as MSC and Treg monotherapies, to inhibit the neuroinflammatory response to TBI in vivo and in vitro. Treg + MSC combination therapy demonstrated increased potency to reduce the neuro- and peripheral inflammatory response compared to monotherapy; furthermore, the timing of infusion proved to be a significant variable in the efficacy of both MSC monotherapy and Treg + MSC combination therapy in vivo and in vitro.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Lesões Encefálicas Traumáticas/imunologia , Terapia Combinada/métodos , Modelos Animais de Doenças , Imunidade , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Ratos Sprague-Dawley
5.
Sci Rep ; 10(1): 10729, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612177

RESUMO

The immune system plays critical roles in promoting tissue repair during recovery from neurotrauma but is also responsible for unchecked inflammation that causes neuronal cell death, systemic stress, and lethal immunodepression. Understanding the immune response to neurotrauma is an urgent priority, yet current models of traumatic brain injury (TBI) inadequately recapitulate the human immune response. Here, we report the first description of a humanized model of TBI and show that TBI places significant stress on the bone marrow. Hematopoietic cells of the marrow are regionally decimated, with evidence pointing to exacerbation of underlying graft-versus-host disease (GVHD) linked to presence of human T cells in the marrow. Despite complexities of the humanized mouse, marrow aplasia caused by TBI could be alleviated by cell therapy with human bone marrow mesenchymal stromal cells (MSCs). We conclude that MSCs could be used to ameliorate syndromes triggered by hypercytokinemia in settings of secondary inflammatory stimulus that upset marrow homeostasis such as TBI. More broadly, this study highlights the importance of understanding how underlying immune disorders including immunodepression, autoimmunity, and GVHD might be intensified by injury.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Doença Enxerto-Hospedeiro/etiologia , Tolerância Imunológica/imunologia , Células-Tronco Mesenquimais/citologia , Linfócitos T/imunologia , Animais , Feminino , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/terapia , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
7.
Tissue Eng Part A ; 26(11-12): 591-601, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31739755

RESUMO

Secondary alveolar bone grafts (ABGs) are the standard treatment for the alveolar defect in patients with cleft lip and palate (CLP), but remain invasive and have several disadvantages such as delayed timing of alveolar repair, donor-site complications, graft resorption, and need for multiple surgeries. Earlier management of the alveolar defect (primary ABG) would be ideal, but is limited by the minimal bony donor sites available in the infant. In this study we used a critical-size alveolar bone defect model in the rat to investigate the use of Wharton's Jelly (WJ), the stem cell-rich connective tissue matrix of the umbilical cord, to generate bone within the alveolar cleft. Human WJ was isolated and implanted into a critical-size alveolar bone defect model representative of secondary cleft ABG surgery in 10-11-week-old male Sprague-Dawley rats. The defects were monitored with CT imaging of living animals to evaluate bone regrowth and healing over 24 weeks, followed by histomorphometric evaluation at 24 weeks, after the last CT scan. CT data confirmed that the defect size was critical and did not lead to the union of the bones in the control animals (n = 12) for the entire duration of the study. New bone growth was stimulated leading to partial-to-full closure of the defect in the animals treated with WJ (n = 12). Twenty four weeks postoperatively, the percent increase in new bone formation in the WJ-treated group (156.58% ± 20.67%) was markedly higher than that in the control group (50.36% ± 21.07%) (p < 0.05). Histomorphometric data also revealed significantly greater new bone formation in WJ-treated versus control animals, confirming CT findings. qPCR analysis of human Alu elements was unable to detect any appreciable long-term persistence of human cells in the new bone, indicating that WJ may enhance bone growth by mediating osteoinduction in the host tissue, rather than through osteogenic differentiation of WJ-embedded cells. Impact statement In this study, Wharton's Jelly enhanced bone growth in a preclinical alveolar defect model, indicating its potential use as a natural adjunct in the repair of the alveolar cleft defect in patients with cleft lip and palate (CLP). The clinical success of this approach would represent a paradigm shift in the treatment of patients with CLP by reducing or eliminating the need for subsequent secondary alveolar bone graft and reducing their number of lifetime surgeries.


Assuntos
Fissura Palatina/cirurgia , Geleia de Wharton , Animais , Regeneração Óssea/fisiologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
8.
J Neuroinflammation ; 15(1): 84, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29548333

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a major cause of death and disability. TBI results in a prolonged secondary central neuro-inflammatory response. Previously, we have demonstrated that multiple doses (2 and 24 h after TBI) of multipotent adult progenitor cells (MAPC) delivered intravenously preserve the blood-brain barrier (BBB), improve spatial learning, and decrease activated microglia/macrophages in the dentate gyrus of the hippocampus. In order to determine if there is an optimum treatment window to preserve the BBB, improve cognitive behavior, and attenuate the activated microglia/macrophages, we administered MAPC at various clinically relevant intervals. METHODS: We administered two injections intravenously of MAPC treatment at hours 2 and 24 (2/24), 6 and 24 (6/24), 12 and 36 (12/36), or 36 and 72 (36/72) post cortical contusion injury (CCI) at a concentration of 10 million/kg. For BBB experiments, animals that received MAPC at 2/24, 6/24, and 12/36 were euthanized 72 h post injury. The 36/72 treated group was harvested at 96 h post injury. RESULTS: Administration of MAPC resulted in a significant decrease in BBB permeability when administered at 2/24 h after TBI only. For behavior experiments, animals were harvested post behavior paradigm. There was a significant improvement in spatial learning (120 days post injury) when compared to cortical contusion injury (CCI) in groups when MAPC was administered at or before 24 h. In addition, there was a significant decrease in activated microglia/macrophages in the dentate gyrus of hippocampus of the treated group (2/24) only when compared to CCI. CONCLUSIONS: Intravenous injections of MAPC at or before 24 h after CCI resulted in improvement of the BBB, improved cognitive behavior, and attenuated activated microglia/macrophages in the dentate gyrus.


Assuntos
Lesões Encefálicas Traumáticas/cirurgia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Multipotentes/fisiologia , Animais , Barreira Hematoencefálica/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade Capilar/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Multipotentes/transplante , Neuropeptídeos/metabolismo , Ratos , Tempo de Reação , Fatores de Tempo
9.
Stem Cells ; 35(5): 1259-1272, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28181347

RESUMO

Mesenchymal stromal cells (MSCs) are believed to mobilize from the bone marrow in response to inflammation and injury, yet the effects of egress into the vasculature on MSC function are largely unknown. Here we show that wall shear stress (WSS) typical of fluid frictional forces present on the vascular lumen stimulates antioxidant and anti-inflammatory mediators, as well as chemokines capable of immune cell recruitment. WSS specifically promotes signaling through NFκB-COX2-prostaglandin E2 (PGE2 ) to suppress tumor necrosis factor-α (TNF-α) production by activated immune cells. Ex vivo conditioning of MSCs by WSS improved therapeutic efficacy in a rat model of traumatic brain injury, as evidenced by decreased apoptotic and M1-type activated microglia in the hippocampus. These results demonstrate that force provides critical cues to MSCs residing at the vascular interface which influence immunomodulatory and paracrine activity, and suggest the potential therapeutic use of force for MSC functional enhancement. Stem Cells 2017;35:1259-1272.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Administração Intravenosa , Animais , Anti-Inflamatórios/metabolismo , Fenômenos Biomecânicos , Reatores Biológicos , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/terapia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/biossíntese , Humanos , Imunomodulação , Inflamação/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fenótipo , Ratos , Reologia , Transdução de Sinais , Estresse Mecânico
10.
Cell Transplant ; 25(10): 1863-1877, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26980267

RESUMO

Neural stem cells (NSCs) promote recovery from brain trauma, but neuronal replacement is unlikely the sole underlying mechanism. We hypothesize that grafted NSCs enhance neural repair at least partially through modulating the host immune response after traumatic brain injury (TBI). C57BL/6 mice were intracerebrally injected with primed human NSCs (hNSCs) or vehicle 24 h after a severe controlled cortical impact injury. Six days after transplantation, brain tissues were collected for Western blot and immunohistochemical analyses. Observations included indicators of microglia/macrophage activation, M1 and M2 phenotypes, axonal injury detected by amyloid precursor protein (APP), lesion size, and the fate of grafted hNSCs. Animals receiving hNSC transplantation did not show significant decreases of brain lesion volumes compared to transplantation procedures with vehicle alone, but did show significantly reduced injury-dependent accumulation of APP. Furthermore, intracerebral transplantation of hNSCs reduced microglial activation as shown by a diminished intensity of Iba1 immunostaining and a transition of microglia/macrophages toward the M2 anti-inflammatory phenotype. The latter was represented by an increase in the brain M2/M1 ratio and increases of M2 microglial proteins. These phenotypic switches were accompanied by the increased expression of anti-inflammatory interleukin-4 receptor α and decreased proinflammatory interferon-γ receptor ß. Finally, grafted hNSCs mainly differentiated into neurons and were phagocytized by either M1 or M2 microglia/macrophages. Thus, intracerebral transplantation of primed hNSCs efficiently leads host microglia/macrophages toward an anti-inflammatory phenotype that presumably contributes to stem cell-mediated neuroprotective effects after severe TBI in mice.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Macrófagos/metabolismo , Microglia/metabolismo , Células-Tronco Neurais/transplante , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígeno B7-2/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Diferenciação Celular , Células Cultivadas , Humanos , Subunidade alfa de Receptor de Interleucina-4/genética , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/imunologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/metabolismo , Fagocitose , Fenótipo , Receptores de Superfície Celular/metabolismo , Receptores de IgG/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo
11.
Stem Cells ; 34(5): 1263-72, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26840479

RESUMO

Intravenous administration of bone marrow derived mesenchymal stem cells (MSCs) has been shown to reduce blood brain barrier compromise and improve neurocognition following traumatic brain injury (TBI). These effects occur in the absence of engraftment and differentiation of these cells in the injured brain. Recent studies have shown that soluble factors produced by MSCs mediate a number of the therapeutic effects. In this study, we sought to determine if intravenous administration of MSCs (IV-MSCs) could enhance hippocampal neurogenesis following TBI. Our results demonstrate that IV-MSC treatment attenuates loss of neural stem cells and promotes hippocampal neurogenesis in TBI injured mice. As Wnt signaling has been implicated in neurogenesis, we measured circulating Wnt3a levels in serum following IV-MSC administration and found a significant increase in Wnt3a. Concurrent with this increase, we detected increased activation of the Wnt/ß-catenin signaling pathway in hippocampal neurons. Furthermore, IV recombinant Wnt3a treatment provided neuroprotection, promoted neurogenesis, and improved neurocognitive function in TBI injured mice. Taken together, our results demonstrate a role for Wnt3a in the therapeutic potential of MSCs and identify Wnt3a as a potential stand-alone therapy or as part of a combination therapeutic strategy for the treatment of TBI. Stem Cells 2016;34:1263-1272.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Cognição , Células-Tronco Mesenquimais/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Recuperação de Função Fisiológica , Proteína Wnt3A/metabolismo , Proteína Wnt3A/uso terapêutico , Administração Intravenosa , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Sobrevivência Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Pulmão/metabolismo , Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Resultado do Tratamento , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/sangue , Proteína Wnt3A/farmacologia
12.
Stem Cells Transl Med ; 5(1): 33-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26586775

RESUMO

UNLABELLED: More than 6.5 million patients are burdened by the physical, cognitive, and psychosocial deficits associated with traumatic brain injury (TBI) in the U.S. Despite extensive efforts to develop neuroprotective therapies for this devastating disorder, there have been no successful outcomes in human clinical trials to date. Retrospective studies have shown that ß-adrenergic receptor blockers, specifically propranolol, significantly decrease mortality of TBI through mechanisms not yet fully elucidated but are thought to counterbalance a hyperadrenergic state resulting from a TBI. Conversely, cellular therapies have been shown to improve long-term behavior following TBI, likely by reducing inflammation. Given the nonredundancy in their therapeutic mechanisms, we hypothesized that a combination of acute propranolol followed by mesenchymal stem cells (MSCs) isolated from human bone marrow would have additive effects in treating a rodent model of TBI. We have found that the treatments are well-tolerated individually and in combination with no adverse events. MSCs decrease BBB permeability at 96 hours after injury, inhibit a significant accumulation of activated microglia/macrophage in the thalamic region of the brain both short and long term, and enhance neurogenesis short term. Propranolol decreases edema and reduces the number of fully activated microglia at 7 days and the number of semiactivated microglia at 120 days. Combinatory treatment improved cognitive and memory functions 120 days following TBI. Therefore, the results here suggest a new, efficacious sequential treatment for TBI may be achieved using the ß-blocker propranolol followed by MSC treatment. SIGNIFICANCE: Despite continuous efforts, traumatic brain injury (TBI) remains the leading cause of death and disability worldwide in patients under the age of 44. In this study, an animal model of moderate-severe TBI was treated with an acute dose of propranolol followed by a delayed dose of human mesenchymal stem cells (MSCs), resulting in improved short- and long-term measurements. These results have direct translational application. They reinforce the inevitable clinical trial of MSCs to treat TBI by demonstrating, among other benefits, a notable decrease in chronic neuroinflammation. More importantly, these results demonstrate that MSCs and propranolol, which is increasingly being used clinically for TBI, are compatible treatments that improve overall outcome.


Assuntos
Lesões Encefálicas/terapia , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Neurogênese/efeitos dos fármacos , Propranolol/farmacologia , Adulto , Aloenxertos , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/patologia , Microglia/patologia , Ratos , Ratos Sprague-Dawley
13.
Stem Cells ; 33(12): 3530-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26299440

RESUMO

Mesenchymal stem cells (MSCs) have been shown to have potent therapeutic effects in a number of disorders including traumatic brain injury (TBI). However, the molecular mechanism(s) underlying these protective effects are largely unknown. Herein we demonstrate that tissue inhibitor of matrix metalloproteinase-3 (TIMP3), a soluble protein released by MSCs, is neuroprotective and enhances neuronal survival and neurite outgrowth in vitro. In vivo in a murine model of TBI, intravenous recombinant TIMP3 enhances dendritic outgrowth and abrogates loss of hippocampal neural stem cells and mature neurons. Mechanistically we demonstrate in vitro and in vivo that TIMP3-mediated neuroprotection is critically dependent on activation of the Akt-mTORC1 pathway. In support of the neuroprotective effect of TIMP3, we find that intravenous delivery of recombinant TIMP3 attenuates deficits in hippocampal-dependent neurocognition. Taken together, our data strongly suggest that TIMP3 has direct neuroprotective effects that can mitigate the deleterious effects associated with TBI, an area with few if any therapeutic options.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Transtornos Cognitivos/tratamento farmacológico , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Inibidor Tecidual de Metaloproteinase-3/farmacologia , Animais , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Hipocampo/patologia , Camundongos , Células-Tronco Neurais/patologia , Neurônios/patologia
14.
Stem Cells Transl Med ; 2(12): 953-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24191266

RESUMO

We previously demonstrated that the intravenous delivery of multipotent adult progenitor cells (MAPCs) after traumatic brain injury (TBI) in rodents provides neuroprotection by preserving the blood-brain barrier and systemically attenuating inflammation in the acute time frame following cell treatment; however, the long-term behavioral and anti-inflammatory effects of MAPC administration after TBI have yet to be explored. We hypothesized that the intravenous injection of MAPCs after TBI attenuates the inflammatory response (as measured by microglial morphology) and improves performance at motor tasks and spatial learning (Morris water maze [MWM]). MAPCs were administered intravenously 2 and 24 hours after a cortical contusion injury (CCI). We tested four groups at 120 days after TBI: sham (uninjured), injured but not treated (CCI), and injured and treated with one of two concentrations of MAPCs, either 2 million cells per kilogram (CCI-2) or 10 million cells per kilogram (CCI-10). CCI-10 rats showed significant improvement in left hind limb deficit on the balance beam. On the fifth day of MWM trials, CCI-10 animals showed a significant decrease in both latency to platform and distance traveled compared with CCI. Probe trials revealed a significant decrease in proximity measure in CCI-10 compared with CCI, suggesting improved memory retrieval. Neuroinflammation was quantified by enumerating activated microglia in the ipsilateral hippocampus. We observed a significant decrease in the number of activated microglia in the dentate gyrus in CCI-10 compared with CCI. Our results demonstrate that intravenous MAPC treatment after TBI in a rodent model offers long-term improvements in spatial learning as well as attenuation of neuroinflammation.


Assuntos
Células-Tronco Adultas/transplante , Comportamento Animal , Lesões Encefálicas/cirurgia , Encéfalo/patologia , Ativação de Macrófagos , Macrófagos/patologia , Aprendizagem em Labirinto , Microglia/patologia , Células-Tronco Multipotentes/transplante , Comportamento Espacial , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/psicologia , Modelos Animais de Doenças , Encefalite/patologia , Encefalite/fisiopatologia , Encefalite/cirurgia , Injeções Intravenosas , Macrófagos/metabolismo , Masculino , Microglia/metabolismo , Atividade Motora , Ratos , Tempo de Reação , Recuperação de Função Fisiológica , Fatores de Tempo
15.
J Trauma Acute Care Surg ; 75(3): 410-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23928737

RESUMO

BACKGROUND: Autologous bone marrow-derived mononuclear cells (AMNCs) have shown therapeutic promise for central nervous system insults such as stroke and traumatic brain injury (TBI). We hypothesized that intravenous injection of AMNC provides neuroprotection, which leads to cognitive improvement after TBI. METHODS: A controlled cortical impact (CCI) rodent TBI model was used to examine blood-brain barrier (BBB) permeability, neuronal and glial apoptosis, as well as cognitive behavior. Two groups of rats underwent CCI with AMNC treatment (CCI-autologous) or without AMNC treatment (CCI-alone), consisting of 2 million AMNC per kilogram body weight harvested from the tibia and intravenously injected 72 hours after injury. CCI-alone animals underwent sham harvests and received vehicle injections. RESULTS: Ninety-six hours after injury, AMNC significantly reduced the BBB permeability in injured animals, and there was an increase in apoptosis of proinflammatory activated microglia in the ipsilateral hippocampus. At 4 weeks after injury, we observed significant improvement in probe testing of CCI-Autologous group in comparison to CCI-Alone in the Morris Water Maze paradigm. CONCLUSION: Our data demonstrate that the intravenous injection of AMNC after TBI leads to neuroprotection by preserving early BBB integrity, increasing activated microglial apoptosis and improving cognitive function.


Assuntos
Transplante de Medula Óssea/métodos , Lesões Encefálicas/cirurgia , Leucócitos Mononucleares/transplante , Macrófagos/fisiologia , Aprendizagem em Labirinto/fisiologia , Microglia/fisiologia , Animais , Apoptose/fisiologia , Barreira Hematoencefálica/fisiopatologia , Lesões Encefálicas/complicações , Lesões Encefálicas/fisiopatologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/prevenção & controle , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
16.
J Neurosci Methods ; 219(1): 176-82, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23928152

RESUMO

BACKGROUND: The inflammatory response after a CNS injury is regulated by microglia/macrophages. Changes in the ratio of M1 classically activated pro-inflammatory cells versus M2 alternatively activated anti-inflammatory cells reveal the direction of the immune response. These cells are routinely identified and enumerated by morphology and cell-surface markers using immunohistochemistry. NEW METHOD: We used a controlled cortical impact (CCI) mouse model for traumatic brain injury (TBI), then isolated microglia/macrophages from neural cell suspensions using magnetic beads conjugated to CD11b monoclonal antibody to obtain the entire myeloid population. Polarization states of CD11b(+)CD45(lo) microglia were evaluated by expression of M1 surface marker FcγRII/III and M2 surface marker CD206. RESULTS: After TBI, we observed an increase in M1:M2 ratio in the ipsilateral hemisphere when compared to the contralateral side, indicating that 24h after CCI, a shift in microglia polarization occurs localized to the hemisphere of injury. Comparison with existing method(s): The major impetus for developing and refining the methods was the need to accurately quantify microglial activation states without reliance on manual morphometric counting of serial immunohistochemistry slides. Flow cytometric analysis of enriched cell suspensions provides quantitative measurement of microglial polarization states complementary to existing methods, but for entire populations of cells. CONCLUSIONS: In summary, we used immunomagnetic beads to isolate myeloid cells from injured brain, then stained surface antigens to flow cytometrically identify and categorize microglia as either classically activated M1 or alternatively activated M2, generating a ratio of M1:M2 cells which is useful in studying attempts to reduce or redirect neuroinflammation.


Assuntos
Citometria de Fluxo/métodos , Separação Imunomagnética/métodos , Microglia/fisiologia , Animais , Encéfalo/patologia , Lesões Encefálicas/patologia , Antígeno CD11b/análise , Separação Celular , Interpretação Estatística de Dados , Corantes Fluorescentes , Imuno-Histoquímica , Antígenos Comuns de Leucócito/análise , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Shock ; 40(3): 195-202, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23807246

RESUMO

We have recently demonstrated that injured patients in hemorrhagic shock shed syndecan 1 and that the early use of fresh frozen plasma (FFP) in these patients is correlated with improved clinical outcomes. As the lungs are frequently injured after trauma, we hypothesized that hemorrhagic shock-induced shedding of syndecan 1 exposes the underlying pulmonary vascular endothelium to injury resulting in inflammation and hyperpermeability and that these effects would be mitigated by FFP. In vitro, pulmonary endothelial permeability, endothelial monolayer flux, transendothelial electrical resistance, and leukocyte-endothelial binding were measured in pulmonary endothelial cells after incubation with equal volumes of FFP or lactated Ringer's (LR). In vivo, using a coagulopathic mouse model of trauma and hemorrhagic shock, pulmonary hyperpermeability, neutrophil infiltration, and syndecan 1 expression and systemic shedding were assessed after 3 h of resuscitation with either 1× FFP or 3× LR and compared with shock alone and shams. In vitro, endothelial permeability and flux were decreased, transendothelial electrical resistance was increased, and leukocyte-endothelial binding was inhibited by FFP compared with LR-treated endothelial cells. In vivo, hemorrhagic shock was associated with systemic shedding of syndecan 1, which correlated with decreased pulmonary syndecan 1 and increased pulmonary vascular hyperpermeability and inflammation. Fresh frozen plasma resuscitation, compared with LR resuscitation, abrogated these injurious effects. After hemorrhagic shock, FFP resuscitation inhibits endothelial cell hyperpermeability and inflammation and restores pulmonary syndecan 1 expression. Modulation of pulmonary syndecan 1 expression may mechanistically contribute to the beneficial effects FFP.


Assuntos
Endotélio/metabolismo , Plasma , Pneumonia/metabolismo , Pneumonia/terapia , Choque Hemorrágico/metabolismo , Choque Hemorrágico/terapia , Sindecana-1/metabolismo , Animais , Células Cultivadas , Humanos , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Sci Transl Med ; 4(161): 161ra150, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23175708

RESUMO

Mesenchymal stem cells (MSCs) may be useful for treating a variety of disease states associated with vascular instability including traumatic brain injury (TBI). A soluble factor, tissue inhibitor of matrix metalloproteinase-3 (TIMP3), produced by MSCs is shown to recapitulate the beneficial effects of MSCs on endothelial function and to ameliorate the effects of a compromised blood-brain barrier (BBB) due to TBI. Intravenous administration of recombinant TIMP3 inhibited BBB permeability caused by TBI, whereas attenuation of TIMP3 expression in intravenously administered MSCs blocked the beneficial effects of the MSCs on BBB permeability and stability. MSCs increased circulating concentrations of soluble TIMP3, which blocked vascular endothelial growth factor-A-induced breakdown of endothelial cell adherens junctions in vitro and in vivo. These findings elucidate a potential molecular mechanism for the beneficial effects of MSCs on the BBB after TBI and demonstrate a role for TIMP3 in the regulation of BBB integrity.


Assuntos
Barreira Hematoencefálica/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Junções Aderentes/metabolismo , Junções Aderentes/patologia , Administração Intravenosa , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas/sangue , Lesões Encefálicas/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Técnicas de Silenciamento de Genes , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/farmacologia , Baço/efeitos dos fármacos , Baço/metabolismo , Inibidor Tecidual de Metaloproteinase-3/sangue
19.
J Neuroinflammation ; 9: 228, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23020860

RESUMO

INTRODUCTION: We have demonstrated previously that the intravenous delivery of multipotent adult progenitor cells (MAPC) after traumatic brain injury affords neuroprotection via interaction with splenocytes, leading to an increase in systemic anti-inflammatory cytokines. We hypothesize that the observed modulation of the systemic inflammatory milieu is related to T regulatory cells and a subsequent increase in the locoregional neuroprotective M2 macrophage population. METHODS: C57B6 mice were injected with intravenous MAPC 2 and 24 hours after controlled cortical impact injury. Animals were euthanized 24, 48, 72, and 120 hours after injury. In vivo, the proportion of CD4(+)/CD25(+)/FOXP3(+) T-regulatory cells were measured in the splenocyte population and plasma. In addition, the brain CD86(+) M1 and CD206(+) M2 macrophage populations were quantified. A series of in vitro co-cultures were completed to investigate the need for direct MAPC:splenocyte contact as well as the effect of MAPC therapy on M1 and M2 macrophage subtype apoptosis and proliferation. RESULTS: Significant increases in the splenocyte and plasma T regulatory cell populations were observed with MAPC therapy at 24 and 48 hours, respectively. In addition, MAPC therapy was associated with an increase in the brain M2/M1 macrophage ratio at 24, 48 and 120 hours after cortical injury. In vitro cultures of activated microglia with supernatant derived from MAPC:splenocyte co-cultures also demonstrated an increase in the M2/M1 ratio. The observed changes were secondary to an increase in M1 macrophage apoptosis. CONCLUSIONS: The data show that the intravenous delivery of MAPC after cortical injury results in increases in T regulatory cells in splenocytes and plasma with a concordant increase in the locoregional M2/M1 macrophage ratio. Direct contact between the MAPC and splenocytes is required to modulate activated microglia, adding further evidence to the central role of the spleen in MAPC-mediated neuroprotection.


Assuntos
Células-Tronco Adultas/transplante , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Microglia/fisiologia , Células-Tronco Multipotentes/fisiologia , Administração Intravenosa , Células-Tronco Adultas/fisiologia , Análise de Variância , Animais , Antígenos CD/metabolismo , Barreira Hematoencefálica/fisiopatologia , Comunicação Celular/fisiologia , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Fígado/citologia , Linfócitos/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/transplante
20.
Pediatr Res ; 71(6): 668-74, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22476046

RESUMO

INTRODUCTION: Infants with gastroschisis (GS) have significant morbidity from dysmotility, feeding intolerance, and are at increased risk of developing intestinal failure. Although the molecular mechanisms regulating GS-related intestinal dysfunction (GRID) are largely unknown, we hypothesized that mechanical constriction (nonocclusive mesenteric hypertension (NMH)) from the abdominal wall defect acts as a stimulus for GRID. The purpose of this study was to determine the effect of NMH on intestinal function and inflammation. METHODS: Neonatal rats had placement of a silastic disk to the base of the mesentery (NMH) or no disk placement (Sham). At 24 and 72 h, mesenteric venous pressures (MVPs), intestinal transit, electric impedance, permeability, length, and tissue water content were measured. RESULTS: After placement of the silastic disk, there was a significant increase in MVP at both time points. There was also decreased intestinal transit. As compared to Sham animals, NMH animals had significant changes in bowel impedance without an increase in tissue water, suggesting significant intestinal remodeling. NMH rats had significantly increased smooth-muscle thickness and loss of intestinal length as compared with Sham rats. DISCUSSION: NMH may be an initiating factor for GRID. Measurement of MVP and/or bowel impedance may be a way to assess severity and monitor progression and/or resolution of GRID.


Assuntos
Gastrosquise/complicações , Hipertensão/complicações , Enteropatias/etiologia , Mesentério/fisiopatologia , Animais , Pressão Sanguínea/fisiologia , Motilidade Gastrointestinal/fisiologia , Gastrosquise/fisiopatologia , Hipertensão/fisiopatologia , Enteropatias/fisiopatologia , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/fisiologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA