Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 295, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177167

RESUMO

Stacking two atomic layers together can induce interlayer (sliding) ferroelectricity that is absent in their naturally occurring crystal forms. With the flexibility of two-dimensional materials, more layers could be assembled to give rise to even richer polarization states. Here, we show that three-layer boron nitride can host ferro- and antiferroelectric domains in the same sample. When used as a tunneling junction, the polarization of these domains could be switched in a layer-by-layer procedure, producing multiple resistance states. Theoretical investigation reveals an important role played by the interaction between the trilayer boron nitride and graphene substrate. These findings reveal the great potential and unique properties of 2D sliding ferroelectric materials.

2.
J Phys Chem Lett ; 14(23): 5456-5465, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37288804

RESUMO

The van der Waals Fe5-xGeTe2 is a 3d ferromagnetic metal with a high Curie temperature of 275 K. We report herein the observation of an exceptional weak antilocalization (WAL) effect that can persist up to 120 K in an Fe5-xGeTe2 nanoflake, indicating the dual nature with both itinerant and localized magnetism of 3d electrons. The WAL behavior is characterized by the magnetoconductance peak around zero magnetic field and is supported by the calculated localized nondispersive flat band around the Fermi level. The peak to dip crossover starting around 60 K in magnetoconductance is visible, which could be ascribed to temperature-induced changes in Fe magnetic moments and the coupled electronic band structure as revealed by angle-resolved photoemission spectroscopy and first-principles calculations. Our findings would be instructive for understanding the magnetic exchanges in transition metal magnets as well as for the design of next-generation room-temperature spintronic devices.

3.
Nano Lett ; 23(6): 2114-2120, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36867589

RESUMO

Electronic properties of two-dimensional (2D) materials can be significantly tuned by an external electric field. Ferroelectric gates can provide a strong polarization electric field. Here, we report the measurements of the band structure of few-layer MoS2 modulated by a ferroelectric P(VDF-TrFE) gate with contact-mode scanning tunneling spectroscopy. When P(VDF-TrFE) is fully polarized, an electric field up to ∼0.62 V/nm through the MoS2 layers is inferred from the measured band edges, which affects the band structure significantly. First, strong band bending in the vertical direction signifies the Franz-Keldysh effect and a large extension of the optical absorption edge. Photons with energy of half the band gap are still absorbed with 20% of the absorption probability of photons at the band gap. Second, the electric field greatly enlarges the energy separations between the quantum-well subbands. Our study intuitively demonstrates the great potential of ferroelectric gates in band structure manipulation of 2D materials.

4.
Nat Commun ; 14(1): 1116, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849499

RESUMO

The excitonic insulator (EI) is a Bose-Einstein condensation (BEC) of excitons bound by electron-hole interaction in a solid, which could support high-temperature BEC transition. The material realization of EI has been challenged by the difficulty of distinguishing it from a conventional charge density wave (CDW) state. In the BEC limit, the preformed exciton gas phase is a hallmark to distinguish EI from conventional CDW, yet direct experimental evidence has been lacking. Here we report a distinct correlated phase beyond the 2×2 CDW ground state emerging in monolayer 1T-ZrTe2 and its investigation by angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The results show novel band- and energy-dependent folding behavior in a two-step process, which is the signatures of an exciton gas phase prior to its condensation into the final CDW state. Our findings provide a versatile two-dimensional platform that allows tuning of the excitonic effect.

5.
Adv Mater ; 34(51): e2203990, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271514

RESUMO

Robust room-temperature interfacial ferroelectricity has been formed in the 2D limit by simply twisting two atomic layers of non-ferroelectric hexagonal boron nitride (hBN). A thorough understanding of this newly discovered ferroelectric system is required. Here, twisted hBN is used as a tunneling junction and it is studied at the nanometer scale using conductive atomic force microscopy. Three properties unique to this system are discovered. First, the polarization dependence of the tunneling resistance contrasts with the conventional theory. Second, the ferroelectric domains can be controlled using mechanical stress, highlighting the original meaning of the emergent "slidetronics". Third, ferroelectric hysteresis is highly spatially dependent. The hysteresis is symmetric at the domain walls. A few nanometers away, the hysteresis shifts completely to the positive or negative side, depending on the original polarization. These findings reveal the unconventional ferroelectricity in this 2D system.

6.
ACS Appl Mater Interfaces ; 14(34): 39039-39045, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35984409

RESUMO

Two-dimensional (2D) semiconductors are holding promises as channel materials for field-effect transistors. Compared to traditional three-dimensional (3D) semiconductors whose electronic and optical properties are hindered by dangling bonds and trap states at the surfaces, 2D materials with saturated chemical bonds on the surface maintain the excellent properties even when device thickness scales down to monolayer. However, dangling bonds are unavoidable at their edges, which are often overlooked and should have important effects on the devices. Here, we show that the edges of as-exfoliated and etched MoS2 are naturally p-type doped and can form p-n junctions with the bulk of the flake. The width of these edge regions is around 20 nm. While their existence could present challenges for the shrinkage of devices, they can be exploited to form rectifying or optoelectronic devices based on a single flake of MoS2 without the need of an elaborate extrinsic doping process.

7.
Nutrients ; 14(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014845

RESUMO

Trimethylamine-N-oxide (TMAO), a gut-microbiota-dependent metabolite after ingesting dietary choline, has been identified as a novel risk factor for atherosclerosis through inducing vascular inflammation. However, the underlying molecular mechanism is poorly understood. Using an in vitro vascular cellular model, we found that the TMAO-induced inflammation responses were correlated with an elevation of ROS levels and downregulation of SIRT1 expression in VSMCs and HUVECs. The overexpression of SIRT1 could abrogate both the stimulation of ROS and inflammation. Further studies revealed that AMPK was also suppressed by TMAO and was a mediator upstream of SIRT1. Activation of AMPK by AICAR could reduce TMAO-induced ROS and inflammation. Moreover, the GSH precursor NAC could attenuate TMAO-induced inflammation. In vivo studies with mice models also showed that choline-induced production of TMAO and the associated glycolipid metabolic changes leading to atherosclerosis could be relieved by NAC and a probiotic LP8198. Collectively, the present study revealed an unrecognized mechanistic link between TMAO and atherosclerosis risk, and probiotics ameliorated TMAO-induced atherosclerosis through affecting the gut microbiota. Consistent with previous studies, our data confirmed that TMAO could stimulate inflammation by modulating cellular ROS levels. However, this was not due to direct cytotoxicity but through complex signaling pathways involving AMPK and SIRT1.


Assuntos
Proteínas Quinases Ativadas por AMP , Aterosclerose , Microbioma Gastrointestinal , Sirtuína 1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Colina/metabolismo , Colina/farmacologia , Microbioma Gastrointestinal/fisiologia , Inflamação/etiologia , Inflamação/metabolismo , Metilaminas/metabolismo , Camundongos , Óxidos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo
8.
ACS Nano ; 16(5): 8107-8115, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35471015

RESUMO

Two-dimensional materials with tunable in-plane anisotropic infrared response promise versatile applications in polarized photodetectors and field-effect transistors. Black phosphorus is a prominent example. However, it suffers from poor ambient stability. Here, we report the strain-tunable anisotropic infrared response of a layered material Nb2SiTe4, whose lattice structure is similar to the 2H-phase transition metal dichalcogenides (TMDCs) with three different kinds of building units. Strikingly, some of the strain-tunable optical transitions are crystallographic axis-dependent, even showing an opposite shift when uniaxial strain is applied along two in-plane principal axes. Moreover, G0W0-BSE calculations show good agreement with the anisotropic extinction spectra. The optical selection rules are obtained via group theory analysis, and the strain induced unusual shift trends are well explained by the orbital coupling analysis. Our comprehensive study suggests that Nb2SiTe4 is a good candidate for tunable polarization-sensitive optoelectronic devices.

9.
ACS Appl Mater Interfaces ; 14(12): 14783-14790, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35290029

RESUMO

PbS colloidal quantum dots (CQDs) are emerging as promising candidates for next-generation, low-cost, and high-performance infrared photodetectors. Recently, photomultiplication has been explored to improve the detectivity of CQD infrared photodetectors by doping charge-trapping material into a matrix. However, this relies on remote doping that could influence carrier transfer giving rise to limited photomultiplication. Herein, a charge-self-trapped ZnO layer is prepared by a surface reaction between acid and ZnO. Photogenerated electrons trapped by oxygen vacancy defects at the ZnO surface generate a strong interfacial electrical field and induce large photomultiplication at extremely low bias. A PbS CQD infrared photodiode based on this structure shows a response (R) of 77.0 A·W-1 and specific detectivity of 1.5 × 1011 Jones at 1550 nm under a -0.3 V bias. This self-trapped ZnO layer can be applied to other photodetectors such as perovskite-based devices.

10.
Angew Chem Int Ed Engl ; 61(5): e202112352, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34647403

RESUMO

Metal halide perovskite materials (MHPMs) have attracted significant attention because of their superior optoelectronic properties and versatile applications. The power conversion efficiency of MHPM solar cells (PSCs) has skyrocketed to 25.5 %. Although the performance of PSCs is already competitive, several important challenges still need to be solved to realize commercial applications. A thorough understanding of surface atomic structures and structure-property relationships is at the heart of these remaining issues. Scanning tunneling microscopy (STM) and spectroscopy (STS) can be used to characterize the surface properties of MHPMs, which can offer crucial insights into MHPMs at the atomic scale. This Review summarizes recent progress in STM and STS studies on MHPMs, with a focus on the surface properties. We provide understanding from the comparative perspective of several different MHPMs. We also highlight a series of novel phenomena observed by STM and STS. Finally, we outline a few research topics of primary importance for future studies.

11.
ACS Nano ; 15(10): 16314-16321, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34651496

RESUMO

Heterostructure devices based on two-dimensional materials have been under intensive study due to their intriguing electrical and optical properties. One key factor in understanding these devices is their nanometer-scale band profiles, which is challenging to obtain in devices. Here, we use a technique named contact-mode scanning tunneling spectroscopy to directly visualize the band profiles of MoS2/WSe2 heterostructure devices at different gate voltages with nanometer resolution. The long-held view of a conventional p-n junction in the MoS2/WSe2 heterostructure is reexamined. Due to strong inter- and intralayer charge transfer, the MoS2 layer in contact with WSe2 is found to convert from n-type to p-type, and a series of gate-tunable p-n and p-p+ junctions are developed in the devices. Highly conductive edges are also discovered which could strongly affect the device properties.

12.
ACS Nano ; 15(4): 7149-7154, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33739831

RESUMO

The ternary van der Waals material Nb2Six-1Te4 demonstrates many interesting properties as the content of Si is changed, ranging from metallic Nb3SiTe6 (x = 5/3) to narrow-gap semiconductor Nb2SiTe4 (x = 2) and with the emergence of one-dimensional Dirac fermion excitations in between. An in-depth understanding of their properties with different stoichiometry is important. Here we use scanning tunneling microscopy and spectroscopy to reveal that Nb2Six-1Te4 is a system with spontaneously developed and self-aligned one-dimensional metallic chains embedded in a two-dimensional semiconductor. Electron quasiparticles form one- and two-dimensional standing waves side by side. This special microscopic structure results in strong transport anisotropy. Along the chain direction the material behaves like a metal, while perpendicular to the chain direction, it behaves like a semiconductor. These findings provide an important basis for further investigation of this intriguing system.

13.
Rev Sci Instrum ; 91(7): 073702, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752799

RESUMO

Band profiles of electronic devices are of fundamental importance in determining their properties. A technique that can map the band profile of both the interior and edges of a device at the nanometer scale is highly demanded. Conventional scanning tunneling spectroscopy (STS) can map band structure at the atomic scale but is limited to the interior of large and conductive samples. Here, we develop contact-mode STS based on a conductive atomic force microscope that can remove these constraints. With this technique, we map the band profile of MoS2 transistors with nanometer resolution at room temperature. A band bending of 0.6 eV within 18 nm of the edges of MoS2 on an insulating substrate is discovered. This technique will be of great use for both fundamental and applied studies of various electronic devices.

14.
ACS Appl Mater Interfaces ; 12(10): 11562-11569, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32073815

RESUMO

The electrochemical conversion of carbon dioxide (CO2) to fuels and chemicals is an opportunity for sustainable energy research that can realize both renewable energy storage and negative carbon cycle feedback. However, the selective generation of multicarbon products is challenging because of the competitive hydrogen evolution reaction (HER) and protonation of the reacting adsorbate. Copper-based materials have been the most commonly studied catalysts for CO2 electroreduction due to their ability to produce a substantial amount of C2 products. Here, we report that a nanodendrite configuration can improve the electrocatalytic performance of Cu catalysts, especially multicarbon product formation, while suppressing HER and methane production. The abundant conductive networks derived from the fractal copper dendritic structures with a high electrochemically active surface area (ECSA) facilitate electron transport and mass transfer, leading to superior kinetics for the formation of multicarbon products from CO2 electroreduction. As a result, approximately 70-120% higher ethylene and 60-220% higher C3 (n-PrOH and propanal) yields with lower onset potentials were produced over Cu nanodendrites compared to the initial Cu particles. This work opens an avenue for promoting CO2 electrochemical reduction to multicarbon products by catalyst configuration modulation.

15.
ACS Nano ; 14(2): 1656-1664, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31961130

RESUMO

Stacking order has a strong influence on the coupling between the two layers of twisted bilayer graphene (BLG), which in turn determines its physical properties. Here, we report the investigation of the interlayer coupling of the epitaxially grown single-crystal 30°-twisted BLG on Cu(111) at the atomic scale. The stacking order and morphology of BLG is controlled by a rationally designed two-step growth process, that is, the thermodynamically controlled nucleation and kinetically controlled growth. The crystal structure of the 30°-twisted bilayer graphene (30°-tBLG) is determined to have quasicrystal-like symmetry. The electronic properties and interlayer coupling of the 30°-tBLG are investigated using scanning tunneling microscopy and spectroscopy. The energy-dependent local density of states with in situ electrostatic doping shows that the electronic states in two graphene layers are decoupled near the Dirac point. A linear dispersion originated from the constituent graphene monolayers is discovered with doubled degeneracy. This study contributes to controlled growth of twist-angle-defined BLG and provides insights on the electronic properties and interlayer coupling in this intriguing system.

16.
ACS Nano ; 13(9): 10705-10710, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31469545

RESUMO

Two-dimensional (2D) materials with narrow band gaps (∼0.3 eV) are of great importance for realizing ambipolar transistors and mid-infrared (MIR) detections. However, most of the 2D materials studied to date have band gaps that are too large. A few of the materials with suitable band gaps are not stable under ambient conditions. In this study, the layered Nb2SiTe4 is shown to be a stable 2D material with a band gap of 0.39 eV. Field-effect transistors based on few-layer Nb2SiTe4 show ambipolar transport with a similar magnitude of electron and hole current and a high charge-carrier mobility of ∼100 cm2 V-1 s-1 at room temperature. Optoelectronic measurements of the devices show clear response to an MIR wavelength of 3.1 µm with a high responsivity of ∼0.66 AW-1. These results establish Nb2SiTe4 as a good candidate for ambipolar devices and MIR detection.

17.
Adv Mater ; 31(30): e1901942, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31157482

RESUMO

Recently the metastable 1T'-type VIB-group transition metal dichalcogenides (TMDs) have attracted extensive attention due to their rich and intriguing physical properties, including superconductivity, valleytronics physics, and topological physics. Here, a new layered WS2 dubbed "2M" WS2 , is constructed from 1T' WS2 monolayers, is synthesized. Its phase is defined as 2M based on the number of layers in each unit cell and the subordinate crystallographic system. Intrinsic superconductivity is observed in 2M WS2 with a transition temperature Tc of 8.8 K, which is the highest among TMDs not subject to any fine-tuning process. Furthermore, the electronic structure of 2M WS2 is found by Shubnikov-de Haas oscillations and first-principles calculations to have a strong anisotropy. In addition, topological surface states with a single Dirac cone, protected by topological invariant Z2 , are predicted through first-principles calculations. These findings reveal that the new 2M WS2 might be an interesting topological superconductor candidate from the VIB-group transition metal dichalcogenides.

18.
Sci Adv ; 4(9): eaat8355, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30225369

RESUMO

Semiconductors are essential materials that affect our everyday life in the modern world. Two-dimensional semiconductors with high mobility and moderate bandgap are particularly attractive today because of their potential application in fast, low-power, and ultrasmall/thin electronic devices. We investigate the electronic structures of a new layered air-stable oxide semiconductor, Bi2O2Se, with ultrahigh mobility (~2.8 × 105 cm2/V⋅s at 2.0 K) and moderate bandgap (~0.8 eV). Combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we mapped out the complete band structures of Bi2O2Se with key parameters (for example, effective mass, Fermi velocity, and bandgap). The unusual spatial uniformity of the bandgap without undesired in-gap states on the sample surface with up to ~50% defects makes Bi2O2Se an ideal semiconductor for future electronic applications. In addition, the structural compatibility between Bi2O2Se and interesting perovskite oxides (for example, cuprate high-transition temperature superconductors and commonly used substrate material SrTiO3) further makes heterostructures between Bi2O2Se and these oxides possible platforms for realizing novel physical phenomena, such as topological superconductivity, Josephson junction field-effect transistor, new superconducting optoelectronics, and novel lasers.

19.
ACS Appl Mater Interfaces ; 10(15): 12831-12838, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29569894

RESUMO

Different two-dimensional (2D) materials, when combined together to form heterostructures, can exhibit exciting properties that do not exist in individual components. Therefore, intensive research efforts have been devoted to their fabrication and characterization. Previously, vertical and in-plane 2D heterostructures have been formed by mechanical stacking and chemical vapor deposition. Here, we report a new material system that can form in-plane p-n junctions by thermal conversion of n-type SnSe2 to p-type SnSe. Through scanning tunneling microscopy and density functional theory studies, we find that these two distinctively different lattices can form atomically sharp interfaces and have a type II to nearly type III band alignment. We also demonstrate that this method can be used to create micron-sized in-plane p-n junctions at predefined locations. These findings pave the way for further exploration of the intriguing properties of the SnSe2-SnSe heterostructure.

20.
ACS Nano ; 11(2): 2219-2226, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28106983

RESUMO

We study the anisotropic electronic properties of two-dimensional (2D) SnS, an analogue of phosphorene, grown by physical vapor transport. With transmission electron microscopy and polarized Raman spectroscopy, we identify the zigzag and armchair directions of the as-grown 2D crystals. The 2D SnS field-effect transistors with a cross-Hall-bar structure are fabricated. They show heavily hole-doped (∼1019 cm-3) conductivity with strong in-plane anisotropy. At room temperature, the mobility along the zigzag direction exceeds 20 cm2 V-1 s-1, which can be up to 1.7 times that in the armchair direction. This strong anisotropy is then explained by the effective mass ratio along the two directions and agrees well with previous theoretical predictions. Temperature-dependent carrier density determined the acceptor energy level to be ∼45 meV above the valence band maximum. This value matches a calculated defect level of 42 meV for Sn vacancies, indicating that Sn deficiency is the main cause of the p-type conductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA