Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(2): 367-370, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194570

RESUMO

We investigate optical transmission in cavity magnon polaritons and discover a complex multi-window magnetically induced transparency and a bistability with magnetic and optical characteristics. With the regulation of Kerr nonlinear effects and driven fields, a complex multi-window resonant transmission with fast and slow light effects appears, which includes transparency and absorption windows. The magnetically induced transparency and absorption can be explained by the destructive and constructive interference between different excitation pathways. Moreover, we demonstrate the bistability of magnons and photons with a hysteresis loop, where magnetic and optical bistabilities can induce and control each other. Our results pave a new way, to the best of our knowledge, for implementing a room-temperature multiband quantum memory.

2.
Phys Rev E ; 108(3-1): 034214, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849096

RESUMO

The nonlinear Landau-Zener-Stückelberg-Majorana (LZSM) tunneling dynamics and interferometry of an extended Bose-Hubbard flux ladder are studied. Based on the mean-field theory, the dispersion relation of the system is given, and it is found that loop structures periodically appear in the band structure and the nonlinear LZSM interference occurs naturally without Floquet engineering, which can be effectively modulated by atomic interactions. The nonlinear energy bands and the unique chirality feature of the flux ladder system can be identified through the dynamics of nonlinear Landau-Zener tunneling. Remarkably, the critical position of the noise in the interference pattern can be employed to identify the loop structure in the energy band, establishing an effective link between the nonlinear loop structure and LZSM interferometry. The position, intensity, symmetry, and width of interference patterns strongly depend on the magnetic field, atomic interactions, rung-to-leg coupling ratio, and energy bias, which provides an effective way to measure these parameters using the nonlinear LZSM interferometry. This paper further expands the dynamics of flux ladder systems to complex interaction regions and has potential applications in the precise measurement of related nonlinear systems.

3.
Opt Express ; 31(16): 26276-26288, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710491

RESUMO

We investigate the transmission of probe fields in a coupled-cavity system with polaritons and propose a theoretical schema for realizing a polariton-based photonic transistor. When probe light passes through such a hybrid optomechanical device, its resonant point with Stokes or anti-Stokes scattered effects, intensity with amplification or attenuation effects, as well as group velocity with slow or fast light effects can be effectively controlled by another pump light. This controlling depends on the exciton-photon coupling and single-photon coupling. We also discover an asymmetric Fano resonance in transparency windows under the strong exciton-photon coupling, which is different from general symmetric optomechanically induced transparency. Our results open up exciting possibilities for designing photonic transistors, which may be useful for implementing polariton integrated circuits.

4.
Phys Rev E ; 107(2-1): 024218, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932477

RESUMO

We study the ground-state stability of the trapped one-dimensional Bose-Einstein condensate under a density-dependent gauge field by variational and numerical methods. The competition of density-dependent gauge field and mean-field atomic interaction induces the instability of the ground state, which results in irregular dynamics. The threshold of the gauge field for exciting the instability is obtained analytically and confirmed numerically. When the gauge field is less than the threshold, the system is stable, and the gauge field induces chiral dynamics of the wave packet. When the gauge field is greater than the threshold, the system is unstable, and the ground-state wave packet will be deformed and fragmented. Interestingly, we find that as the gauge field approaches the threshold, strong dipolar and breathing dynamics take place, and strong modes mixing occurs, the instability of the system sets in. In addition, we show that the stability of the system can be well controlled by periodical modulation of the trapping potential. We provide theoretical evidence to understand and control the irregular dynamics associated with chiral superfluid induced by density-dependent gauge field.

5.
Phys Rev E ; 106(4-1): 044215, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397576

RESUMO

The two-leg magnetic ladder is the simplest and ideal model to reflect the coupling effects of lattice and magnetic field. It is of great significance to study some novel phases, topological characteristics, and chiral characteristics in condensed matter physics. In particular, the left-right leg degree of freedom can be regarded as a pseudospin, and the two-leg magnetic ladder also provides an ideal platform for the study of spin dynamics. Here the ground state, Bloch oscillations (BOs), and spin dynamics of the interacting two-leg magnetic ladder subject to an external linear force are studied by using variational approach and numerical simulation. In the absence of the external linear force, the critical condition of transition between the zero-momentum state and plane-wave state is obtained analytically, and the physical mechanism of the ground-state transition is revealed. When the external linear force presents, the occurrence of BOs excites the spin dynamics, and we reveal the chiral BOs and the accompanied spin dynamics of the system in different ground states. In particular, we further study the influence of periodically modulated linear force on BOs and spin dynamics. The frequencies of the linear force corresponding to the resonances and pseudoresonances are obtained analytically, which result in rich nonlinear dynamics. In resonances, stable and strong BOs (with larger amplitude) are observed. In pseudoresonances, because the pseudoresonance frequencies are related to the initial momentum and phase of the wave packet, a dispersion effect takes place and strong diffusion of wave packet occurs. When the frequency is nonresonant, drift and weak dispersion of wave packet occur simultaneously with the wave-packet oscillation. In all cases, the wave-packet dynamics is accompanied with periodic but anharmonic pseudospin oscillation. The BOs and spin dynamics are effectively controlled by periodically modulating the linear force.

6.
Phys Rev E ; 104(3-1): 034214, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654141

RESUMO

We analytically and numerically study the different types of solitary wave in the two-component helicoidal spin-orbit coupled Bose-Einstein condensates (BECs). Adopting the multiscale perturbation method, we derive the analytical bright and dark solitary wave solutions of the system, and the stationary and moving bright (dark) solitary waves are obtained. The effects of spin-orbit coupling, the helicoidal gauge potential, the momentum, the Zeeman splitting, and the atomic interactions on the solitary wave types are discussed, and it is found that the coupling of these physical parameters can manipulate different types of solitary waves in the system. The results indicate that the helicoidal gauge potential breaks the symmetric properties of the energy band of the system and adjusts the energy band structure, thus further effecting the solitary wave properties, i.e., stationary or moving solitary wave, bright, or dark solitary wave. Correspondingly, the analytical predictions for exciting stationary or moving bright (dark) solitary wave in parameter space are obtained. In particular, the helicoidal gauge potential changes the solitary wave types drastically for the weak spin-orbit coupling, i.e., in the absence of the helicoidal gauge potential, only dark (bright) solitary wave solutions exist in the system with repulsive (attractive) atomic interaction; however, in the presence of the helicoidal gauge potential, both dark and bright solitary waves can exist in the system regardless of whether the atomic interaction is repulsive or attractive. In addition, we investigate the stability of solitary waves and obtain the stability regions of different types of solitary waves by applying the linear stability analysis. The dynamic evolution results of the solitary waves by the direct numerical simulation not only validate the linear stability analysis but also confirm the analytical prediction of the solitary waves. Finally, the collision effects between solitary waves are also presented by the numerical simulation. It is shown that the interactions between solitary waves in the system have both elastic and inelastic collisions, which are closely related to the position of solitary wave states in the linear energy band. Our results provide a potential way to adjust the types of solitary waves in BECs with helicoidal gauge potential.

7.
Phys Rev E ; 104(2-1): 024212, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525534

RESUMO

The stability and superfluidity of the Bose-Einstein condensate in two-leg ladder with magnetic field are studied. The dispersion relation and the phase diagram of the system are obtained. Three phases are revealed: the Meissner phase, the biased ladder (BL) phase, and the vortex phase. The dispersion relation and phase transition of the system strongly depend on the magnitude of atomic interaction strength, the rung-to-leg coupling ratio and the magnetic flux. Particularly, the change of the energy band structure in the phase transition region is modified significantly by the atomic interaction strength. Furthermore, based on the Bogoliubov theory, the energetic and dynamical stability of the system are invested. The stability phase diagram in the full parameter space is presented, and the dependence of superfluidity on the dispersion relation is illustrated explicitly. The atomic interaction strength can produce dynamical instability in the energetic unstable region and can expand the superfluid region. The results show that the stability of the system can be controlled by the atomic interaction strength, the rung-to-leg coupling ratio and the magnetic flux. In addition, the excitation spectrums in the Meissner phase, BL phase and vortex phase are further studied. The modulation of the excitation spectrum and the energetic stability of the system by the atomic interaction strength, the rung-to-leg coupling ratio and magnetic flux is discussed. Finally, through the numerical simulation, the dynamical instability of the system is verified by the time evolution of the Bloch wave and rung current. This provides a theoretical basis for controlling the superfluidity of the system.

8.
Phys Rev E ; 103(2-1): 022204, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33736056

RESUMO

We theoretically study the ground-state phases and superfluidity of tunable spin-orbit-coupled Bose-Einstein condensates (BECs) under the periodic driving of Raman coupling. An effective time-independent Floquet Hamiltonian is proposed by using a high-frequency approximation, and we find single-particle dispersion, spin-orbit-coupling, and asymmetrical nonlinear two-body interaction can be modulated effectively by the periodic driving. The critical Raman coupling characterizing the phase transition and relevant physical quantities in three different phases (the stripe phase, plane-wave phase, and zero momentum phase) are obtained analytically. Our results indicate that the boundary of ground-state phases can be controlled and the system will undergo three different phase transitions by adjusting the external driving. Interestingly, we find the contrast of the stripe density can be enhanced by the periodic driving in the stripe phase. We also study the superfluidity of tunable spin-orbit-coupled BECs and find the dynamical instability can be tuned by the periodic driving of Raman coupling. Furthermore, the sound velocity of the ground-state and superfluidity state can be controlled effectively by tuning the periodic driving strength. Our results indicate that the periodic driving of Raman coupling provides a powerful tool to manipulate the ground-state phase transition and dynamical instability of spin-orbit-coupled BECs.

9.
Phys Rev E ; 104(6-1): 064215, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030834

RESUMO

We analytically and numerically discuss the dynamics of two pseudospin components Bose-Einstein condensates (BECs) with spin-orbit coupling (SOC) in deep optical lattices. Rich localized phenomena, such as breathers, solitons, self-trapping, and diffusion, are revealed and strongly depend on the strength of the atomic interaction, SOC, Raman detuning, and the spin polarization (i.e., the initial population difference of atoms between the two pseudospin components of BECs). The critical conditions for the transition of localized states are derived analytically. Based on the critical conditions, the detailed dynamical phase diagram describing the different dynamical regimes is derived. When the Raman detuning satisfies a critical condition, localized states with a fixed initial spin polarization can be observed. When the critical condition is not satisfied, we use two quenching methods, i.e., suddenly and linearly quenching Raman detuning from the soliton or breather state, to discuss the spin dynamics, phase transition, and wave packet dynamics by numerical simulation. The sudden quenching results in a damped oscillation of spin polarization and transforms the system to a new polarized state. Interestingly, the linear quenching of Raman detuning induces a controllable phase transition from an unpolarized phase to an expected polarized phase, while the soliton or breather dynamics is maintained.

10.
Phys Rev E ; 102(3-1): 032220, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33076041

RESUMO

The Bose-Einstein condensates in a finite depth potential well provide an ideal platform to study the quantum escape dynamics. In this paper, the ground state, tunneling, and diffusion dynamics of the spin-orbit coupling (SOC) of Bose-Einstein condensates with two pseudospin components in a shallow trap are studied analytically and numerically. The phase transition between the plane-wave phase and zero-momentum phase of the ground state is obtained. Furthermore, the stability of the ground state is discussed, and the stability diagram in the parameter space is provided. The bound state (in which condensates are stably trapped in the potential well), the quasibound state (in which condensates tunnel through the well), and the unstable state (in which diffusion occurs) are revealed. We find that the finite depth potential well has an important effect on the phase transition of the ground state, and, interestingly, SOC can stabilize the system against the diffusion and manipulate the tunneling and diffusion dynamics. In particular, spatial anisotropic tunneling and diffusion dynamics of the two pseudospin components induced by SOC in quasibound and unstable states are observed. We provide an effective model and method to study and control the quantum tunneling and diffusion dynamics.

11.
Phys Rev E ; 100(3-1): 032220, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31639894

RESUMO

We theoretically study the modulation instability (MI) of the two-component helicoidal spin-orbit coupled Bose-Einstein condensates (BECs). The effects of spin-orbit coupling, the helicoidal gauge potential, and atomic interactions on MI are investigated. The results indicate that the presence of the helicoidal gauge potential breaks the symmetric properties of MI, strongly modifies the distribution of the MI region and the MI gain in parameters space, and the MI can be excited even when the miscibility condition for the atomic interactions is satisfied. Furthermore, the effect of the helicoidal gauge potential on MI is strongly coupled with the intra and intercomponent atomic interactions. Particularly, with the increase of the helical gauge potential, the MI gain increases for the repulsive atomic interaction case, however, the MI gain decreases for the attractive atomic interaction case. The direct numerical simulations are performed to support the analytical predictions, and a good agreement is found. Our results provide a potential way to manipulate the MI in BECs with helicoidal gauge potential.

12.
Phys Rev E ; 99(6-1): 062220, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31330691

RESUMO

We investigate the different types of matter-wave solitons in spin-orbit-coupled spin-2 spinor Bose-Einstein condensates. Using mean-field theory and adopting the multiscale perturbation method, the original five-component Gross-Pitaevskii spin-orbit-coupled spin-2 spinor Bose-Einstein condensate model can be reduced to a single effective nonlinear Schrödinger equation, which allows us to find analytical soliton solutions of this system. In this way, for different regimes of the spin-orbit coupling, Raman coupling, and interatomic interactions, we find approximate bright and dark soliton solutions. Particularly, the type of solitons depends on the dispersion properties of the system. When the lowest-energy band has a single-well structure, we find there only exist positive mass bright or dark solitons due to the dispersion coefficient of effective nonlinear Shrödinger equation always positive. However, when the lowest-energy band has a double-well structure, there will appear positive (negative) mass bright or dark solitons because the sign of the dispersion coefficient can be positive (negative) under different momentum. We employ direct numerical simulation of the original five-component Gross-Pitaevskii equations to confirm the analytical results.

13.
Sci Rep ; 7(1): 15635, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142281

RESUMO

By variational analysis and direct numerical simulation, we study the phase transition and stability of a trapped D-dimensional Bose-Einstein condensate with spin-orbit coupling. The complete phase and stability diagrams of the system are presented in full parameter space, while the collapse dynamics induced by the mean-filed attraction and the mechanism for stabilizing the collapse by spin-orbit coupling are illustrated explicitly. Particularly, a full and deep understanding of the dependence of phase transition and stability mechanism on geometric dimensionality and external trap potential is revealed. It is shown that the spin-orbit coupling can modify the dispersion relations, which can balance the mean-filed attractive interaction and result in a spin polarized or overlapped state to stabilize the collapse, then changes the collapsing threshold dependent on the geometric dimensionality and external trap potential. Moreover, from 2D to 3D system, the mean-field attraction for inducing the collapse is reduced and the collapse speed is enhanced, namely, the collapse can be more easily stabilized in 2D system. That is, the collapse can be manipulated by adjusting the spin-orbit coupling, Raman coupling, geometric dimensionality and the external trap potential, which can provide a possible way for elaborating the collapse dynamics experimentally.

14.
Phys Rev E ; 93(2): 022214, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26986338

RESUMO

We study the collective dynamics of the spin-orbit coupled two pseudospin components of a Bose-Einstein condensate trapped in a quasi-one-dimensional harmonic potential, by using variational and directly numerical approach of binary mean-field Gross-Pitaevskii equations. The results show that, because of strong coupling of spin-orbit coupling (SOC), Rabi coupling, and atomic interaction, the collective dynamics of the system behave as complex characters. When the Rabi coupling is absent, the density profiles of the system preserve the Gauss type and the wave packets do harmonic oscillations. The amplitude of the collective oscillations increases with SOC. Furthermore, when the SOC strength increases, the dipole oscillations of the two pseudospin components undergo a transition from in-phase to out-of-phase oscillations. When the Rabi coupling present, there will exist a critical value of SOC strength (which depends on the Rabi coupling and atomic interaction). If the SOC strength is less than this critical value, the density profiles of the system can preserve the Gauss type and the wave packets do anharmonic (the frequency of dipole oscillations depends on SOC) oscillations synchronously (i.e., in-phase oscillations). However, if the SOC strength is larger than this critical value, the wave packets are dynamically fragmented and the stable dipole oscillations of the system can not exist. The collective dynamics of the system can be controlled by adjusting the atomic interaction, SOC, and Rabi-coupling strength.

15.
Artigo em Inglês | MEDLINE | ID: mdl-23767649

RESUMO

We study the dynamics of dipolar gas in deep lattices described by a nonlocal nonlinear discrete Gross-Pitaevskii equation. The stabilities and the propagation properties of traveling plane waves in the system with defects are discussed in detail. For a clean lattice, both energetic and dynamical stabilities of the traveling plane waves are studied. It is shown that the system with attractive local interaction can preserve the stabilities, i.e., the dipoles can stabilize the gas because of repulsive nonlocal dipole-dipole interactions. For a lattice with defects, within a two-mode approximation, the propagation properties of traveling plane waves in the system map onto a nonrigid pendulum Hamiltonian with quasimomentum-dependent nonlinearity (induced by the nonlocal interactions). Competition between defects, quasimomentum of the gas, and nonlocal interactions determines the propagation properties of the traveling plane waves. Critical conditions for crossing from a superfluid regime with propagation preserved to a normal regime with defect-induced damping are obtained analytically and confirmed numerically. In particular, the critical conditions for supporting the superfluidity strongly depend on the defect type and the quasimomentum of the plane waves. The nonlocal interaction can significantly enhance the superfluidity of the system.


Assuntos
Gases/química , Microfluídica/métodos , Modelos Químicos , Modelos Moleculares , Dinâmica não Linear , Simulação por Computador
16.
Artigo em Inglês | MEDLINE | ID: mdl-23496646

RESUMO

The nonlinear interaction of an ultraintense short laser beam and an inhomogeneous electron-positron-ion (EPI) plasma is investigated. It is found that the presence of positrons and inhomogeneity results in strong modulational and filamentational instabilities, which induce strong nonlinear interactions between the laser beam and the inhomogeneous EPI plasma. Light beam focusing, filamentation, trapping, and nonlinear interaction between the trapped light spots and the inhomogeneous plasma are observed. Interestingly, we find that the inhomogeneity of the plasma can not only boost a mechanism for light beam self-focusing and filamentation but also provide an effective way to localize and trap the beam in the region one wanted.


Assuntos
Lasers , Modelos Químicos , Gases em Plasma/química , Gases em Plasma/efeitos da radiação , Simulação por Computador , Elétrons , Íons , Dinâmica não Linear
17.
Artigo em Inglês | MEDLINE | ID: mdl-24483540

RESUMO

By considering the discrete nonlinear Schrödinger model with dipole-dipole interactions for dipolar condensate, the existence, the types, the stability, and the dynamics of the localized modes in a nonlinear lattice are discussed. It is found that the contact interaction and the dipole-dipole interactions play important roles in determining the existence, the type, and the stability of the localized modes. Because of the coupled effects of the contact interaction and the dipole-dipole interactions, rich localized modes and their stability nature can exist: when the contact interaction is larger and the dipole-dipole interactions is smaller, a discrete bright breather occurs. In this case, while the on-site interaction can stabilize the discrete breather, the dipole-dipole interactions will destabilize the discrete breather; when both the contact interaction and the dipole-dipole interactions are larger, a discrete kink appears. In this case, both the on-site interaction and the dipole-dipole interactions can stabilize the discrete kink, but the discrete kink is more unstable than the ordinary discrete breather. The predicted results provide a deep insight into the dynamics of blocking, filtering, and transfer of the norm in nonlinear lattices for dipolar condensates.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 2): 017601, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23005569

RESUMO

We consider the modulational instability (MI) of Bose-Einstein condensate (BEC) described by a modified Gross-Pitaevskii (GP) equation with higher-order nonlinearity both analytically and numerically. A new explicit time-dependent criterion for exciting the MI is obtained. It is shown that the higher-order term can either suppress or enhance the MI, which is interesting for control of the system instability. Importantly, we predict that with the help of the higher-order nonlinearity, the MI can also take place in a BEC with repulsively contact interactions. The analytical results are confirmed by direct numerical simulations.


Assuntos
Algoritmos , Modelos Estatísticos , Dinâmica não Linear , Teoria Quântica , Simulação por Computador
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 2): 066605, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23368070

RESUMO

By considering a general discrete nonlinear Schrödinger model with arbitrary values of nonlinearity power and disorder, the existence and stability of a discrete breather (DB) in a general nonlinear lattice are discussed. It is found that nonlinearity and disorder play important roles in determining the existence and stability of the DB. Nonlinearity (expressed by the interparticle interaction) and disorder can enhance the stability of the DB. Remarkably, we find that the DB is most stable when the nonlinearity power is equal to a critical value. The effects of nonlinearity, nonlinearity power, and disorder on the stability of the DB are strongly coupled.

20.
Phys Rev Lett ; 101(18): 180401, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18999797

RESUMO

We predict the existence of self-trapping, stable, moving solitons and breathers of Fermi wave packets along the Bose-Einstein condensation (BEC)-BCS crossover in one dimension (1D), 2D, and 3D optical lattices. The dynamical phase diagrams for self-trapping, solitons, and breathers of the Fermi matter waves along the BEC-BCS crossover are presented analytically and verified numerically by directly solving a discrete nonlinear Schrödinger equation. We find that the phase diagrams vary greatly along the BEC-BCS crossover; the dynamics of Fermi wave packet are different from that of Bose wave packet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA