Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosurg ; : 1-10, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30497184

RESUMO

OBJECTIVEIt has been reported that microRNA-195 (miR-195) protects against chronic brain injury induced by chronic brain hypoperfusion. However, neither the expression profile of miR-195 nor its potential role during acute ischemic stroke has been investigated. In this study, the authors' aim was to verify the mechanism of miR-195 in acute ischemic stroke.METHODSThe plasma levels of miR-195 expression were assessed using real-time PCR in 96 patients with acute ischemic stroke, and the correlation with the National Institutes of Health Stroke Scale score was evaluated. In addition, cerebral infarct volume, neurological score, and levels of miR-195 and CX3CL1/CX3CR1 mRNA and protein expression were assessed in mice subjected to middle cerebral artery occlusion (MCAO) with or without intra-cerebroventricular infusion of lentiviral vector. The inflammatory cytokines tumor necrosis factor-α (TNFα), interleukin (IL)-1ß, and IL-6 of mouse brains after MCAO and BV2 cells treated with oxygen-glucose deprivation were measured using enzyme-linked immunosorbent assay, and apoptotic proteins were examined by Western blotting. Direct targeting of CX3CL1/CX3CR1 by miR-195 was determined by immunoblotting and dual luciferase assay.RESULTSIn ischemic stroke patients, miR-195 was significantly downregulated and expression levels of miR-195 in these patients negatively correlated with the National Institutes of Health Stroke Scale score. In mice after MCAO, miR-195 overexpression decreased infarct volume, alleviated neurological deficits, and most importantly, suppressed an inflammatory response. Meanwhile, miR-195 suppressed the expression of the inflammatory cytokines TNFα, IL-1ß, and IL-6 in vitro and in vivo. The authors further discovered that both CX3CL1 and CX3CR1 are direct targets of miR-195, but miR-195 exerts neuroprotective roles mainly through inhibiting CX3CR1-mediated neuroinflammation and subsequent neuronal cell apoptosis.CONCLUSIONSTaken together, these findings suggest that miR-195 promotes neuronal cell survival against chronic cerebral ischemic damage by inhibiting CX3CR1-mediated neuroinflammation. This indicates that miR-195 may represent a novel target that regulates neuroinflammation and brain injury, thus offering a new treatment strategy for cerebral ischemic disorders.

2.
Cell Physiol Biochem ; 51(4): 1566-1583, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30497066

RESUMO

BACKGROUND/AIMS: Glioblastoma multiforme (GBM) is the most devastating and widespread primary central nervous system tumour in adults, with poor survival rate and high mortality rates. Existing treatments do not provide substantial benefits to patients; therefore, novel treatment strategies are required. Peiminine, a natural bioactive compound extracted from the traditional Chinese medicine Fritillaria thunbergii, has many pharmacological effects, especially anticancer activities. However, its anticancer effects on GBM and the underlying mechanism have not been demonstrated. This study was conducted to investigate the potential antitumour effects of peiminine in human GBM cells and to explore the related molecular signalling mechanisms in vitro and in vivo Methods: Cell viability and proliferation were detected with MTT and colony formation assays. Morphological changes associated with autophagy were assessed by transmission electron microscopy (TEM). The cell cycle rate was measured by flow cytometry. To detect changes in related genes and signalling pathways in vitro and in vivo, RNA-seq, Western blotting and immunohistochemical analyses were employed. RESULTS: Peiminine significantly inhibited the proliferation and colony formation of GBM cells and resulted in changes in many tumour-related genes and transcriptional products. The potential anti-GBM role of peiminine might involve cell cycle arrest and autophagic flux blocking via changes in expression of the cyclin D1/CDK network, p62 and LC3. Changes in Changes in flow cytometry results and TEM findings were also observed. Molecular alterations included downregulation of the expression of not only phospho-Akt and phospho-GSK3ß but also phospho-AMPK and phospho-ULK1. Furthermore, overexpression of AKT and inhibition of AKT reversed and augmented peiminine-induced cell cycle arrest in GBM cells, respectively. The cellular activation of AMPK reversed the changes in the levels of protein markers of autophagic flux. These results demonstrated that peiminine mediates cell cycle arrest by suppressing AktGSk3ß signalling and blocks autophagic flux by depressing AMPK-ULK1 signalling in GBM cells. Finally, peiminine inhibited the growth of U251 gliomas in vivo. CONCLUSION: Peiminine inhibits glioblastoma in vitro and in vivo via arresting the cell cycle and blocking autophagic flux, suggesting new avenues for GBM therapy.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Cevanas/uso terapêutico , Glioblastoma/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cevanas/farmacologia , Feminino , Fritillaria/química , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos
3.
Cell Physiol Biochem ; 44(4): 1381-1395, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29186708

RESUMO

BACKGROUND/AIMS: Glioma is the most devastating cancer in the brain and has a poor prognosis in adults. Therefore, there is a critical need for novel therapeutic strategies for the management of glioma patients. Isogambogenic acid, an active compound extracted from the Chinese herb Garcinia hanburyi, induces autophagic cell death. METHODS: Cell viability was detected with MTT assays. Cell proliferation was assessed using the colony formation assay. Morphological changes associated with autophagy and apoptosis were tested by TEM and Hoechst staining, respectively. The apoptosis rate was measured by flow cytometry. Western blot, immunofluorescence and immunohistochemical analyses were used to detect protein expression. U87-derived xenografts were established for the examination of the effect of isogambogenic acid on glioma growth in vivo. RESULTS: Isogambogenic acid induced autophagic death in U87 and U251 cells, and blocking late-stage autophagy markedly enhanced the antiproliferative activities of isogambogenic acid. Moreover, we observed the activation of AMPK-mTOR signalling in isogambogenic acid-treated glioma cells. Furthermore, the activation of AMPK or the inhibition of mTOR augmented isogambogenic acid-induced autophagy. Inhibition of autophagy attenuated apoptosis in isogambogenic acid-treated glioma cells. Finally, isogambogenic acid inhibited the growth of U87 glioma in vivo. CONCLUSION: Isogambogenic acid inhibits the growth of glioma via activation of the AMPK-mTOR signalling pathway, which may provide evidence for future clinical applications in glioma therapy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Xantonas/toxicidade , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo , Xantonas/química , Xantonas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA