RESUMO
Diabetes is a global chronic disease that seriously endangers human health and characterized by abnormally high blood glucose levels in the body. Diabetic wounds are common complications which associate with impaired healing process. Biomarkers monitoring of diabetic wounds is of great importance in the diabetes management. However, actual monitoring of biomarkers still largely relies on the complex process and additional sophisticated analytical instruments. In this work, we prepared hydrogels composed of different modules, which were designed to monitor different physiological indicators in diabetic wounds, including glucose levels, pH, and temperature. Glucose monitoring was achieved based on the combination of photonic crystal (PC) structure and glucose-responsive hydrogels. The obtained photonic crystal hydrogels (PCHs) allowed visual monitoring of glucose levels in physiological ranges by readout of intuitive structural color changes of PCHs during glucose-induced swelling and shrinkage. Interestingly, the glucose response of double network PCHs was completed in 15 min, which was twice as fast as single network PCHs, due to the higher volume fraction of glucose-responsive motifs. Moreover, pH sensing was achieved by incorporation of acid-base indicator dyes into hydrogels; and temperature monitoring was obtained by integration of thermochromic powders in hydrogels. These hydrogel modules effectively monitored the physiological levels and dynamic changes of three physiological biomarkers, both in vitro and in vivo during diabetic wound healing process. The multifunctional hydrogels with visual monitoring of biomarkers have great potential in wound-related monitoring and treatment.
Assuntos
Glicemia , Diabetes Mellitus Experimental , Hidrogéis , Cicatrização , Hidrogéis/química , Cicatrização/efeitos dos fármacos , Animais , Concentração de Íons de Hidrogênio , Glicemia/análise , Camundongos , Glucose , Masculino , Temperatura , Fótons , Humanos , Biomarcadores/sangue , RatosRESUMO
Diabetic wounds are serious clinical complications which manifest wet condition due to the mass exudate, along with disturbed regulation of inflammation, severe oxidative stress and repetitive bacterial infection. Existing treatments for diabetic wounds remain unsatisfactory due to the lack of ideal dressings that encompass mechanical performance, adherence to moist tissue surfaces, quick repair, and diverse therapeutic benefits. Herein, we fabricated a wet adhesive, self-healing, glucose-responsive drug releasing hydrogel with efficient antimicrobial and pro-healing properties for diabetic wound treatment. PAE hydrogel was constructed with poly(acrylic acid-co-acrylamide) (AA-Am) integrated with a dynamic E-F crosslinker, which consisted of epigallocatechin gallate (EGCG) and 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA). Due to the dynamic crosslinking nature of boronate esters, abundant catechol groups and hydrogen bonding, PAE hydrogel demonstrated excellent mechanical properties with about 1000 % elongation, robust adhesion to moist tissues, fast self-healing, and absorption of biofluids of 10 times of its own weight. Importantly, PAE hydrogel exhibited sustained and glucose-responsive release of EGCG. Together, the bioactive PAE hydrogel had effective antibacterial, antioxidative, and anti-inflammatory properties in vitro, and accelerated diabetic wound healing in rats via reducing tissue-inflammatory response, enhancing angiogenesis, and reprogramming of macrophages. Overall, this versatile hydrogel provides a straightforward solution for the treatment of diabetic wound, and shows potential for other wound-related application scenarios.
RESUMO
Reversible adhesion with on-demand attachment and detachment is used by many animals for their locomotion. However, achieving robust and switchable adhesion on rough surfaces in artificial adhesives remains a significant challenge. Here, we present a snail mucus-inspired touch-initiate adhesive (TIA), showing robust adhesions on various surfaces. TIA is a polymeric hydrogel photo-cured with the presence of supersaturated sodium acetate (NaAc) in the precursor solution. TIA is soft and flexible at room temperature, allowing it to form conformal contact with objects with various surfaces. The contact with the target surface immediately initiates the crystallization of TIA, increasing the elastic modulus of TIA by an order of magnitude. The increased modulus and the interlocking with the target surfaces thus results in an adhesion strength up to 465.56 ± 84.05 kPa. TIA can be easily detached from the surface by heating to a temperature above 58 °C, showing an adhesion strength of 12.71 ± 2.73 kPa. The detached TIA, even cooled down to and kept at room temperature, is readily used for the subsequent adhesion. The study here not only provides a highly adhesive material for on-demand attachment to various surfaces, but also proposes a new design strategy to compose smart materials.
RESUMO
The ideal tissue engineering scaffold should facilitate rapid cell infiltration and provide an optimal immune microenvironment during interactions with the host. Electrospinning can produce two-dimensional (2D) membranes mimicking the extracellular matrix. However, their dense structure hinders cell penetration, and their thin form restricts scaffold utility. In this study, latticed hydrogels were three-dimensional (3D) printed onto electrospun membranes. This technique allowed for layer-by-layer assembly of the membranes into 3D scaffolds, which maintained their resilience impressively under both dry and wet conditions. We assessed the cellular and host responses of these 3D nanofiber scaffolds by comparing random membranes and mesh-like membranes with three different mesh sizes (250, 500, and 750 µm). It was found that scaffolds with a mesh size of 500 µm were superior for M2 macrophage phenotype polarization, vascularization, and matrix deposition. Furthermore, it was confirmed by subsequent experiments such as RNA sequencing that the mesh-like topology may promote polarization to the M2 phenotype by affecting the PI3K/AKT pathway. In conclusion, our work offers a novel method for transforming 2D nanofiber membranes into 3D scaffolds. This method boasts flexibility, allowing for the use of varied electrospun membranes and hydrogels in terms of structure and composition. It has vast potential in tissue repair and regeneration.
Assuntos
Hidrogéis , Nanofibras , Impressão Tridimensional , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais , Nanofibras/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Medicina Regenerativa/métodos , Hidrogéis/química , Animais , Camundongos , Macrófagos/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Células RAW 264.7 , HumanosRESUMO
Integrating sensors and other functional parts in one device can enable a new generation of integrated intelligent devices that can perform self-sensing and monitoring autonomously. Applications include buildings that detect and repair damage, robots that monitor conditions and perform real-time correction and reconstruction, aircraft capable of real-time perception of the internal and external environment, and medical devices and prosthetics with a realistic sense of touch. Although integrating sensors and other functional parts into self-sensing intelligent devices has become increasingly common, additive manufacturing has only been marginally explored. This review focuses on additive manufacturing integrated design, printing equipment, and printable materials and stuctures. The importance of the material, structure, and function of integrated manufacturing are highlighted. The study summarizes current challenges to be addressed and provides suggestions for future development directions.
RESUMO
Reversible adhesives are widely needed in our daily lives and industrial applications. However, robust and switchable adhesion on rough surfaces with on-demand attachment and detachment remains highly challenging. Here, we report a snail-mucus-inspired touch-responsive hydrogel (TRH), whose universal and robust adhesion is triggered by simple contact with the attaching surface. TRH is composed of a polymeric hydrogel and saturated sodium acetate (NaAc) and is prepared by one-pot synthesis. At room temperature, TRH remains in an amorphous and soft state, which allows it to conformally adapt to rough surfaces. The contact with the target surface triggers the crystallization of NaAc, which increases the modulus of TRH by an order of magnitude and interlocks with the target surfaces, achieving an adhesion of up to 204.84 ± 53.98 kPa. Upon heating, TRH returns to a soft state, facilitating easy detachment with adhesion of 5.12 ± 1.34 kPa. Meanwhile, the detached TRH is ready for the next adhesion without the need to be maintained at high temperature. TRH finds applications as a smart material for light-triggered adhesion switching, information encryption, and temperature sensors.
RESUMO
The gradient modulus in beetle setae plays a critical role in allowing it to stand and walk on natural surfaces. Mimicking beetle setae to create a modulus gradient in microscale, especially in the direction of setae radius, can achieve reliable contact and thus strong adhesion. However, it remains highly challenging to achieve modulus gradient along radial directions in setae-like structures. Here, polydimethylsiloxane (PDMS) micropillar with radial gradient modulus, (termed GM), is successfully constructed by making use of the polymerization inhibitor in the photosensitive resin template. GM gains adhesion up to 84 kPa, which is 2.3 and 4.7 times of soft homogeneous micropillars (SH) and hard homogeneous micropillars (HH), respectively. The radial gradient modulus facilitates contact formation on various surfaces and shifts stress concentration from contact perimeter to the center, resulting in adhesion enhancement. Meanwhile, GM achieves strong friction of 8.1 mN, which is 1.2 and 2.6 times of SH and HH, respectively. Moreover, GM possesses high robustness, maintaining strong adhesion and friction after 400 cycles of tests. The work here not only provides a robust structure for strong adhesion and friction, but also establishes a strategy to create modulus gradient at micron-scale.
RESUMO
Flexible wearable strain sensors have shown great potential in monitoring human motion, due to their ability to flexibly fit to multiple surfaces, which can realize the monitoring of human motions and external stimulation. However, the utilization of the sensor in extreme conditions such as low or high temperatures still poses a risk of signal output distortion. Moreover, the continuous usage of the sensor may result in extensive bacterial growth at the interface between the sensor and the skin, posing a threat to human health. Herein, a hydrophobic flexible antibacterial strain sensor (CGP) based on carbon black-PDMS was prepared, inspired by the superhydrophobic surface of a lotus leaf. The CGP sensor demonstrates exceptional sensitivity, with a gauge factor (GF) of 0.467 in the strain range of 0-15% and a fast response time (65.4 ms, 5% strain). Additionally, it exhibits a high conductivity of 1.2 mS cm-1 at -20 °C and 2.0 mS cm-1 at 100 °C, indicating its ability to function effectively even in extreme temperatures. The static water contact angle of CGP measures 121.7°, and self-cleaning experiments have confirmed its excellent self-cleaning performance. Furthermore, the CGP displays distinct response characteristics to movements of human fingers, wrists, and knees, making it an ideal choice for monitoring various joints in the human body. In terms of antibacterial properties, CGP has demonstrated an antibacterial rate of over 99% against E. coli and S. aureus. Possessing high sensitivity, superior electrical conductivity in harsh environments, and super antibacterial capabilities, CGP holds significant potential for applications in human motion monitoring and other fields.
Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Escherichia coli , Staphylococcus aureus , Pele , Antibacterianos/farmacologiaRESUMO
Surgical crushing of stones alone has not addressed the increasing prevalence of kidney stones. A promising strategy is to tackle the kidney damage and crystal aggregation inherent in kidney stones with the appropriate therapeutic target. FKBP prolyl isomerase 5 (FKBP5) is a potential predictor of kidney injury, but its status in calcium oxalate (CaOx) kidney stones is not clear. This study attempted to elucidate the role and mechanism of FKBP5 in CaOx kidney stones. Lentivirus and adeno-associated virus were used to control FKBP5 expression in a CaOx kidney stone model. Transcriptomic sequencing and immunological assays were used to analyze the mechanism of FKBP5 deficiency in CaOx kidney stones. The results showed that FKBP5 deficiency reduced renal tubular epithelial cells (RTEC) apoptosis and promoted cell proliferation by downregulating BOK expression. It also attenuated cell-crystal adhesion by downregulating the expression of CDH4. In addition, it inhibited M1 polarization and chemotaxis of macrophages by suppressing CXCL10 expression in RTEC. Moreover, the above therapeutic effects were exerted by inhibiting the activation of NF-κB signaling. Finally, in vivo experiments showed that FKBP5 deficiency attenuated stone aggregation and kidney injury in mice. In conclusion, this study reveals that FKBP5 deficiency attenuates cell-crystal adhesion, reduces apoptosis, promotes cell proliferation, and inhibits macrophage M1 polarization and chemotaxis by inhibiting NF-κB signaling. This provides a potential therapeutic target for CaOx kidney stones.
Assuntos
Cálculos Renais , NF-kappa B , Animais , Camundongos , Oxalato de Cálcio , Transdução de Sinais , Cálculos Renais/genética , ApoptoseRESUMO
Anisotropic surfaces with special wettability under various temperatures are of both fundamental interest and practical importance in many fields. However, little attention has been paid to the surfaces at temperatures between room temperature and the boiling point of water, which is partially due to the lack of a suitable characterization technique. Here, using the MPCP (monitoring of the position of the capillary's projection) technique, the influence of the temperature on the friction of a water droplet on the graphene-PDMS (GP) micropillar array (GP-MA) is investigated. The friction forces in the orthogonal directions and the anisotropy in the friction decrease when the GP-MA surface is heated up, based on the photothermal effect of graphene. The friction forces also decrease along the pre-stretching direction but increase in the orthogonal direction when the stretching is increased. The change in the contact area, the Marangoni flow inside a droplet, and the mass reduction are responsible for the temperature dependence. The findings strengthen our fundamental understanding of the dynamics of drop friction at high temperatures and could pave the way for the design of new functional surfaces with special wettabilities.
RESUMO
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.
Assuntos
Polietilenoglicóis , Polímeros , Humanos , Polietilenoglicóis/química , Cetonas/química , Osso e Ossos , Propriedades de SuperfícieRESUMO
Bioinspired structured adhesives have promising applications in the fields of robotics, electronics, medical engineering, and so forth. The strong adhesion and friction as well as the durability of bioinspired hierarchical fibrillar adhesives are essential for their applications, which require fine submicrometer structures to stay stable during repeated use. Here, we develop a bioinspired bridged micropillars array (BP), which realizes a 2.18-fold adhesion and a 2.02-fold friction as compared to that of poly(dimethylsiloxane) (PDMS) original micropillar arrays. The aligned bridges offer BP strong anisotropic friction. The adhesion and friction of BP can be finely regulated by changing the modulus of the bridges. Moreover, BP shows strong adaptability to surface curvature (ranging from 0 to 800 m-1), excellent durability over 500 repeating cycles of attachment/detachment, and self-cleaning ability. This study presents a novel approach for designing robust structured adhesives with strong and anisotropic friction, which may find applications in areas such as climbing robots and cargo transportation.
RESUMO
The topographic cues of wound dressings play important roles in regulating cellular behaviors, such as cellular migration and morphology, and are capable of providing a prolonged stimulus for promoting wound healing. However, 3D porous dressings that can guide wound healing from the periphery to the center are poorly studied. Herein, radial sponges with adjustable lamellar spacing and microridge spacing by ice templating are developed to facilitate wound healing. With denser lamellae and microridges, fibroblasts achieve a more orderly arrangement, a larger elongation, and a greater migration rate. Meanwhile, the elongated state enables human umbilical vein endothelial cells to vascularization. The faster healing rate and a higher degree of vascularization based on radial sponges are further demonstrated in full-thickness skin defects in rats. Taken together, radial sponges with the densest lamellae and microridges perform the best in guiding the wound from the periphery to the center of the repair environment. It is believed that the proposed structure here can be combined with various biochemical factors to provide dressings with functions.
Assuntos
Neovascularização Fisiológica , Cicatrização , Ratos , Humanos , Animais , Pele , Neovascularização Patológica , Movimento Celular , Células Endoteliais da Veia Umbilical HumanaRESUMO
Alkaline water electrolysis (AWE) is among the most developed technologies for green hydrogen generation. Despite the tremendous achievements in boosting the catalytic activity of the electrode, the operating current density of modern water electrolyzers is yet much lower than the emerging approaches such as the proton-exchange membrane water electrolysis (PEMWE). One of the dominant hindering factors is the high overpotentials induced by the gas bubbles. Herein, the bubble dynamics via creating the superaerophobic electrode assembly is optimized. The patterned Co-Ni phosphide/spinel oxide heterostructure shows complete wetting of water droplet with fast spreading time (≈300 ms) whereas complete underwater bubble repelling with 180° contact angle is achieved. Besides, the current collector/electrode interface is also modified by coating with aerophobic hydroxide on Ti current collector. Thus, in the zero-gap water electrolyzer test, a current density of 3.5 A cm-2 is obtained at 2.25 V and 85 °C in 6 m KOH, which is comparable with the state-of-the-art PEMWE using Pt-group metal catalyst. No major performance degradation or materials deterioration is observed after 330 h test. This approach reveals the importance of bubble management in modern AWE, offering a promising solution toward high-rate water electrolysis.
RESUMO
The strong adhesion on dry and wet surfaces and the durability of bioinspired hierarchical fibrillar adhesives are critical for their applications. However, the critical design for the strong adhesion normally depends on fine sub-micron structures which could be damaged during repeat usage. Here, we develop a tree frog-inspired gradient composite micropillars array (GP), which not only realizes a 2.3-times dry adhesion and a 5.6-times wet adhesion as compared to the pure polydimethylsiloxane (PDMS) micropillars array (PP), but also shows excellent durability over 200 repeating cycles of attachment/detachment and self-cleaning ability. A GP consists of stiffer tips and softer roots by incorporating gradient dispersed CaCO3 nanoparticles in PDMS micropillar stalks. The modulus gradient along the micropillar height facilitates the contact formation and enhances the maximum stress during the detaching. The study here provides a new design strategy for robust adhesives for practical applications in the fields of robotics, electronics, medical engineering, etc.
RESUMO
A microlens array (MLA) is an essential optical imaging device in the applications of augmented and virtual realities. The imaging of MLA would become blurry in a humid outdoor atmosphere. While the incorporation of superhydrophobicity to MLA would prevent the adhesion of droplets, the complex structure and the multiple fabrication process reduce the capability of optical imaging of MLA. Herein, a flexible superhydrophobic MLA with good optical imaging capability is successfully fabricated by the combination of 3D direct laser writing (DLW) and soft lithography. 3D DLW allows the fabrication of MLA with a hierarchical pillar array (h-MLA) in one step, which ensures good optical properties of the resulting polydimethylsiloxane (PDMS) h-MLA. The resulting h-MLAs with pitches ranging between 50 and 100 µm are superhydrophobic from which water droplets slide away at a sliding angle smaller than 15.6° and bounce off from the surface. Meanwhile, the hierarchical pillar array has a limited impact on the imaging capability and the field of view of h-MLA. With an optimized pitch of 60 µm, h-MLA has a transparency as good as MLA. Moreover, PDMS h-MLA retains excellent optical and superhydrophobic properties when bent and in an extremely humid environment. We believe that the proposed h-MLA could find applications in outdoor environments.
RESUMO
Bioinspired surfaces with special wettabilities attract increasing attention due to their extensive applications in many fields. However, the characterizations of surface wettability by contact angle (CA) and sliding angle (SA) have clear drawbacks. Here, by using an array of triangular micropillars (ATM) prepared by soft lithography, the merits of measuring the friction force of a water droplet on ATM over measurements of CA and SA in characterizing the surface wettability are demonstrated. The CA and SA measurements show ignorable differences in the wettabilities of ATM in opposite directions (1.13%) and that with different periodic parameters under the elongation ranging from 0 to 70%. In contrast, the friction measurement reveals a difference of > 10% in opposite directions. Moreover, the friction force shows a strong dependence on the periodic parameters which is regulated by mechanical stretching. Increasing the elongation from 0 to 50% increases the static and kinetic friction force up to 23.0% and 22.9%, respectively. Moreover, the stick-slip pattern during kinetic friction can reveal the periodic features of the measured surface. The friction force measurement is a sensitive technique that could find applications in the characterization of surface wettabilities.
RESUMO
Bio-inspired structured adhesives have promising applications in many fields, like biomedicine, robotics, and aerospace. However, achieving robust and switchable adhesion in structured adhesives on non-planar surfaces remains highly challenging. Inspired by the gripping and rolling motions of gecko toes, a strong and switchable adhesive, which comprises a pillar array with radial-oriented spatular tips and is named as PROST, is developed. PROST possesses a robust adhesion on flat surfaces and doubles its adhesion on curved surfaces. Moreover, in situ and fast adhesion switching of PROST on flat/curved surfaces in dry and wet conditions has been realized by solvent stimulation, mimicking the bending locomotion of gecko toes. The work here provides a new strategy for designing controllable adhesion on curved substrates.
RESUMO
Structural colors from photonic crystals (PCs) have attracted emerging attention in the research area of wearable sensors. Conventional self-assembly of PC takes days to weeks. Here, a fast self-assembly method of PC with horizontal precipitation of silica nanoparticles (NPs) in a polydimethylsiloxane fence, which can be completed within 1-4 h depending on the fence parameters, is introduced. The resultant PC exhibits tunable structural colors in the entire visible spectrum. With infiltration of composite hydrogels containing acrylic acid, acrylamide, chitosan, and carbon nanotubes (CNTs) into the gaps of NPs to form an inverse opal PC, a structural color hydrogel that can quickly respond to different stimuli, including strain and temperature, is obtained. Moreover, with the addition of CNTs, the composite PC hydrogel can also output an electronic signal together with optical color changes. Based on these extraordinary responsive behaviors, the PC hydrogel sensor for quantitative feedback to external stimuli of stretching, bending, pressing, and thermal stimuli, with brilliant color change and electronic signal outputs simultaneously, is demonstrated. This fast-assembled PC hydrogel with excellent responsive properties has great potential for applications in wearable devices, mechanical sensors, temperature sensors, and colorimetric displays.
Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Hidrogéis/química , Fótons , TemperaturaRESUMO
The adhesion behaviors of droplets on surfaces are attracting increasing attention due to their various applications. Many bioinspired superhydrophobic surfaces with different adhesion states have been constructed in order to mimic the functions of natural surfaces such as a lotus leaf, a rose petal, butterfly wings, etc. In this review, we first present a brief introduction to the fundamental theories of the adhesion behaviors of droplets on various surfaces, including low adhesion, high adhesion and anisotropic adhesion states. Then, different techniques to characterize droplet adhesion on these surfaces, including the rotating disk technique, the atomic force microscope cantilever technique, and capillary sensor-based techniques, are described. Wetting behaviors, and the switching between different adhesion states on bioinspired surfaces, are also summarized and discussed. Subsequently, the diverse applications of bioinspired surfaces, including water collection, liquid transport, drag reduction, and oil/water separation, are discussed. Finally, the challenges of using liquid adhesion behaviors on various surfaces, and future applications of these surfaces, are discussed.