Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 17(5): e202300483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430216

RESUMO

Ultrasound (US)-guided diffuse optical tomography (DOT) has demonstrated potential for breast cancer diagnosis, in which real-time or near real-time diagnosis with high accuracy is desired. However, DOT's relatively slow data processing and image reconstruction speeds have hindered real-time diagnosis. Here, we propose a real-time classification scheme that combines US breast imaging reporting and data system (BI-RADS) readings and DOT frequency domain measurements. A convolutional neural network is trained to generate malignancy probability scores from DOT measurements. Subsequently, these scores are integrated with BI-RADS assessments using a support vector machine classifier, which then provides the final diagnostic output. An area under the receiver operating characteristic curve of 0.978 is achieved in distinguishing between benign and malignant breast lesions in patient data without image reconstruction.


Assuntos
Neoplasias da Mama , Tomografia Óptica , Humanos , Tomografia Óptica/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Processamento de Imagem Assistida por Computador/métodos , Fatores de Tempo , Redes Neurais de Computação
2.
Biomed Opt Express ; 14(11): 6072-6087, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021111

RESUMO

Ultrasound (US)-guided diffuse optical tomography (DOT) is a portable and non-invasive imaging modality for breast cancer diagnosis and treatment response monitoring. However, DOT data pre-processing and imaging reconstruction often require labor intensive manual processing which hampers real-time diagnosis. In this study, we aim at providing an automated US-assisted DOT pre-processing, imaging and diagnosis pipeline to achieve near real-time diagnosis. We have developed an automated DOT pre-processing method including motion detection, mismatch classification using deep-learning approach, and outlier removal. US-lesion information needed for DOT reconstruction was extracted by a semi-automated lesion segmentation approach combined with a US reading algorithm. A deep learning model was used to evaluate the quality of the reconstructed DOT images and a two-step deep-learning model developed earlier is implemented to provide final diagnosis based on US imaging features and DOT measurements and imaging results. The presented US-assisted DOT pipeline accurately processed the DOT measurements and reconstruction and reduced the procedure time to 2 to 3 minutes while maintained a comparable classification result with manually processed dataset.

3.
J Biomed Opt ; 28(8): 086002, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37638108

RESUMO

Significance: Ultrasound (US)-guided diffuse optical tomography (DOT) has demonstrated great potential for breast cancer diagnosis in which real-time or near real-time diagnosis with high accuracy is desired. Aim: We aim to use US-guided DOT to achieve an automated, fast, and accurate classification of breast lesions. Approach: We propose a two-stage classification strategy with deep learning. In the first stage, US images and histograms created from DOT perturbation measurements are combined to predict benign lesions. Then the non-benign suspicious lesions are passed through to the second stage, which combine US image features, DOT histogram features, and 3D DOT reconstructed images for final diagnosis. Results: The first stage alone identified 73.0% of benign cases without image reconstruction. In distinguishing between benign and malignant breast lesions in patient data, the two-stage classification approach achieved an area under the receiver operating characteristic curve of 0.946, outperforming the diagnoses of all single-modality models and of a single-stage classification model that combines all US images, DOT histogram, and imaging features. Conclusions: The proposed two-stage classification strategy achieves better classification accuracy than single-modality-only models and a single-stage classification model that combines all features. It can potentially distinguish breast cancers from benign lesions in near real-time.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Tomografia Óptica , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Ultrassonografia de Intervenção
4.
Biomed Opt Express ; 14(4): 1636-1646, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078047

RESUMO

Diffuse optical tomography (DOT) is a promising technique that provides functional information related to tumor angiogenesis. However, reconstructing the DOT function map of a breast lesion is an ill-posed and underdetermined inverse process. A co-registered ultrasound (US) system that provides structural information about the breast lesion can improve the localization and accuracy of DOT reconstruction. Additionally, the well-known US characteristics of benign and malignant breast lesions can further improve cancer diagnosis based on DOT alone. Inspired by a fusion model deep learning approach, we combined US features extracted by a modified VGG-11 network with images reconstructed from a DOT deep learning auto-encoder-based model to form a new neural network for breast cancer diagnosis. The combined neural network model was trained with simulation data and fine-tuned with clinical data: it achieved an AUC of 0.931 (95% CI: 0.919-0.943), superior to those achieved using US images alone (0.860) or DOT images alone (0.842).

5.
J Biomed Opt ; 27(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36008881

RESUMO

SIGNIFICANCE: "Difference imaging," which reconstructs target optical properties using measurements with and without target information, is often used in diffuse optical tomography (DOT) in vivo imaging. However, taking additional reference measurements is time consuming, and mismatches between the target medium and the reference medium can cause inaccurate reconstruction. AIM: We aim to streamline the data acquisition and mitigate the mismatch problems in DOT difference imaging using a deep learning-based approach to generate data from target measurements only. APPROACH: We train an artificial neural network to output data for difference imaging from target measurements only. The model is trained and validated on simulation data and tested with simulations, phantom experiments, and clinical data from 56 patients with breast lesions. RESULTS: The proposed method has comparable performance to the traditional approach using measurements without mismatch between the target side and the reference side, and it outperforms the traditional approach using measurements when there is a mismatch. It also improves the target-to-artifact ratio and lesion localization in patient data. CONCLUSIONS: The proposed method can simplify the data acquisition procedure, mitigate mismatch problems, and improve reconstructed image quality in DOT difference imaging.


Assuntos
Aprendizado Profundo , Tomografia Óptica , Algoritmos , Artefatos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA