Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 9(1): 126, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773064

RESUMO

Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.


Assuntos
Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Imunoterapia , Inibidores de Checkpoint Imunológico/uso terapêutico
2.
Open Life Sci ; 18(1): 20220559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874630

RESUMO

Advances in brain imaging have led to a higher incidence of brain metastases (BM) being diagnosed. Stereotactic radiotherapy (SRS), systemic immunotherapy, and targeted drug therapy are commonly used for treating BM. In this study, we summarized the differences in overall survival (OS) between several treatments alone and in combination. We carried out a systematic literature search on Pubmed, EMBASE, and Cochrane Library. Differences in OS associated with Immune checkpoint inhibitors (ICI) alone versus targeted therapy alone and SRS + ICI or ICI alone were evaluated. This analysis was conducted on 11 studies involving 4,154 patients. The comprehensive results of fixed effect model showed that the OS of SRS + ICI group was longer than that of the ICI group (hazard ratio, 1.72; 95% CI: 1.41-2.11; P = 0.22; I 2 = 30%). The combined fixed-effect model showed that the OS time of ICI was longer than that of targeted therapy (hazard ratio, 2.09; 95% CI: 1.37-3.20; P = 0.21; I 2 = 35%). The study had a low risk of bias. In conclusion, our analysis confirmed that immunotherapy alone showed a higher OS benefit in BM patients than targeted therapy alone. The total survival time of patients with SRS combined with ICI was higher than that of patients with single ICI.

3.
Opt Lett ; 46(19): 4785-4788, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598199

RESUMO

Fourier ptychographic microscopy (FPM), as an emerging computational imaging method, has been applied to quantitative phase imaging with resolution bypassing the physical limit of the detection objective. Due to the weak illumination intensity and long image acquisition time, the achieved imaging speed in current FPM methods is still low, making them unsuitable for real-time imaging applications. We propose and demonstrate a high-speed FPM method based on using laser illumination and digital micro-mirror devices for illumination angle scanning. In this new, to the best of our knowledge, FPM method, we realized quantitative phase imaging and intensity imaging at over 42 frames per second (fps) with around 1 µm lateral resolution. The quantitative phase images have revealed membrane height fluctuations of red blood cells with nanometer-scale sensitivity, while the intensity images have resolved subcellular features in stained cancer tissue slices.


Assuntos
Algoritmos , Microscopia , Análise de Fourier , Luz , Iluminação
4.
Stem Cell Res Ther ; 11(1): 279, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660632

RESUMO

BACKGROUND: Stem cell senescence has been proposed as one of the major drivers of aging, and MSC senescence contributes to aging-related diseases. Activation of mTORC1 pathway and heterochromatin organization have been characterized as two characteristics of senescent cells; however, whether mTORC1 pathway interacts with heterochromatin organization and contributes to MSC senescence remains unknown. In this study, we investigated the interaction between heterochromatin organization and mTORC1/p70S6K pathway in stress-induced MSC senescence. METHODS: The stress-induced senescence models were established in human umbilical cord-derived MSCs by doxorubicin (Dox) or H2O2. Cellular senescence was evaluated by ß-Gal activity, upregulation of cell cycle suppressor genes, and expression of SASP. Activation of heterochromatin organization and mTORC1 pathway was determined by Western blot and immunofluorescent staining. A D-galactose (D-Gal)-induced aging model was established in rats to evaluate the crosstalk between heterochromatin and mTORC1 pathway in vivo. RESULTS: We found that heterochromatin organization was provoked at the early stage of Dox- or H2O2-induced senescence. Disruption of heterochromatin organization led to robust DNA damage response and exacerbated cellular senescence. Suppression of mTORC1/p70S6K pathway by either rapamycin or p70S6K knockdown promoted heterochromatin organization and ameliorated Dox- or H2O2-induced DNA damage and senescence. In contrast, direct activation of mTORC1 by MHY1485 impaired heterochromatin organization and aggravated stress-induced senescence. Moreover, concomitant activation of mTORC1 pathway and heterochromatin organization was found in D-galactose-induced osteoporosis model in rats. Rapamycin alleviated cellular senescence and promoted heterochromatin organization in BMSCs derived from D-galactose-treated rats. CONCLUSIONS: Altogether, our study indicates the existence of a complex interplay between the mTORC1/p70S6K pathway and the heterochromatin organization during stress-induced MSC senescence, with important implications for the understanding of aging as well as for its prevention and treatment.


Assuntos
Heterocromatina , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Senescência Celular , Heterocromatina/genética , Peróxido de Hidrogênio , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Ratos
5.
Reproduction ; 156(3): 261-268, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29930176

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene affect fertility in both sexes. However, the involvement of CFTR in regulating germ cell development remains largely unknown. Here, we used zebrafish model to investigate the role of CFTR in primordial germ cells (PGCs) development. We generated a cftr frameshift mutant zebrafish line using CRISPR/Cas9 technique and investigated the migration of PGCs during early embryo development. Our results showed that loss of Cftr impairs the migration of PGCs from dome stages onward. The migration of PGCs was also perturbed by treatment of CFTRinh-172, a gating-specific CFTR channel inhibitor. Moreover, defected PGCs migration in cftr mutant embryos can be partially rescued by injection of WT but not other channel-defective mutant cftr mRNAs. Finally, we observed the elevation of cxcr4b, cxcl12a, rgs14a and ca15b, key factors involved in zebrafish PGCs migration, in cftr-mutant zebrafish embryos. Taken together, the present study revealed an important role of CFTR acting as an ion channel in regulating PGCs migration during early embryogenesis. Defect of which may impair germ cell development through elevation of key factors involved in cell motility and response to chemotactic gradient in PGCs.


Assuntos
Movimento Celular/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Embrião não Mamífero/fisiologia , Células Germinativas/fisiologia , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Desenvolvimento Embrionário , Mutação da Fase de Leitura , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
6.
Mycoses ; 61(8): 600-609, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29611232

RESUMO

Aspergillosis in falcons may be associated with high mortality and difficulties in clinical and laboratory diagnosis. We previously cloned an immunogenic protein, Afmp1p, in Aspergillus fumigatus and showed that anti-Afmp1p antibodies were present in human patients with A. fumigatus infections. In this study, we hypothesise that a similar Afmp1p-based enzyme-linked immunosorbent assay (ELISA) could be applied to serodiagnose falcon aspergillosis. A specific polyclonal antibody was first generated to detect falcon serum IgY. Horseradish peroxidase-conjugate of this antibody was then used to measure anti-Afmp1p antibodies in sera collected from falcons experimentally infected with A. fumigatus, and the performance of the Afmp1p-based ELISA was evaluated using sera from healthy falcons and falcons with documented A. fumigatus infections. All four experimentally infected falcons developed culture- and histology-proven invasive aspergillosis. Anti-Afmp1p antibodies were detected in their sera. For the Afmp1p-based ELISA, the mean ± SD OD450 nm using sera from 129 healthy falcons was 0.186 ± 0.073. Receiver operating characteristics curve analysis showed an absorbance cut-off value of 0.407. One negative serum gave an absorbance outside the normal range, giving a specificity of 99.2%. For the 12 sera from falcons with confirmed aspergillosis, nine gave absorbance values ≥ cut-off, giving a sensitivity of 75%. The Afmp1p-based ELISA is useful for serodiagnosis of falcons with aspergillosis.


Assuntos
Anticorpos Antifúngicos/sangue , Antígenos de Fungos/imunologia , Aspergilose/veterinária , Doenças das Aves/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Falconiformes , Glicoproteínas de Membrana/imunologia , Testes Sorológicos/métodos , Animais , Aspergilose/diagnóstico , Curva ROC , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA