RESUMO
Electrochemical water splitting for hydrogen production is an ideal process for clean energy production. However, highly active and low-cost electrocatalysts are essential and challenging. In this work, a multi-component Cu-based catalyst (Ru-M-C-Cu), synergized with ruthenium (Ru) heteroatom doping, was synthesized via a facile immersion-calcination-immersion method. Based on the cotton biomass substrate, a hollow tubular structure was obtained. By virtue of its distinctive structure and high carbon content, cotton biomass assumed a dual role as a sacrificial template and a reducing agent in the eco-friendly synthesis of electrocatalysts, which was instrumental in the creation of a multi-component system augmented by heteroatom doping. The multi-component system was constructed by in-situ transformation and redox reaction during calcination in an oxygen-free environment. The Ru-M-C-Cu catalyst exhibited a competitive overpotential of 108 mV at a current density of 10 mA cm-2 for alkaline hydrogen evolution reaction (HER). The satisfactory catalytic performance of Ru-M-C-Cu can be attributed to the fact that the Ru-O-Cu catalytic centers enhanced the adsorption and desorption abilities of the Cu-O active sites toward hydrogen. Furthermore, the hollow tubular structure allowed the electrolyte to make full contact with the active sites of the Ru-M-C-Cu catalyst, thus accelerated the HER kinetics. The catalyst showed structural and chemical stability after a 12-hour successive test. Besides, the production cost of Ru-M-C-Cu was significantly reduced by 99.1 % than that of commercial 20 % Pt/C, showing the potential as an alternative catalyst by offering a more accessible and sustainable source. This work provides a new design of sustainable low-budget electrocatalysts with the proposed strategies expected for producing clean and renewable hydrogen energy.
RESUMO
A novel rosarin di-Cu complex 2Cu-1 and a linear six-pyrrolic mono-copper complex 1Cu-1 were synthesized using rosarin as the ligand. The molecular conformations of these complexes were confirmed by X-ray crystallography. The optical study of 1Cu-1 indicated NIR-II absorption due to the long six-pyrrolic ligand and the ICT effect. The 2Cu-1 complex exhibited a very narrow electronic reduction-oxidation gap of 0.50 eV, attributed to the antiaromatic characteristics of the rosarin ring. The first HER study of the di-copper rosarin complex 2Cu-1 indicated that the multi-metal poly-pyrrolic complexes are promising molecular hydrogen evolution reaction catalysts.
RESUMO
The interaction of dioxygen (O2) with inorganic nanomaterials is one of the most essential steps to understanding the reaction mechanism of O2-related reactions. However, quantitative analyses for O2-binding processes and subsequent oxidation reactions on the surface are still elusive, whereas the reaction of O2 with molecules such as transition metal complexes has been widely explored. Herein, we have quantitatively evaluated reaction processes of air-oxidation reactions of atomically precise thiolate-protected Au25 nanoclusters ([Au25(SR)18]-) as a model of O2 activation by inorganic nanomaterials. Kinetic analyses on the air-oxidation reaction of [Au25(SR)18]- revealed a controlling factor for O2-activation processes, which could be finely tunable by the protecting thiolate ligands.
RESUMO
Four structurally bent porphyrin(2.1.2.1) Pt(II) complexes have been obtained and verified well. Main absorbance of Pt(II) porphyrin(2.1.2.1) displayed a significant red-shift compared to that of porphyrin(1.1.1.1) Pt(II) molecules. 1O2 study indicated that electron-withdrawing group and intramolecular charge transfer effect synergistically endowed Pt(II) porphyrin(2.1.2.1) with good singlet oxygen-sensitizing capacity under blue LED light irradiation. This work presents a simple synthesis way to develop a new series of efficient porphyrinoid singlet oxygen photosensitizers for PDT through molecular engineering.
RESUMO
This work reported "trinitarian" porphyrin nanobelts, contained hetero-trimetal ions. The high-resolution mass spectrometry and X-ray crystallography proved PNBNiCuPd consisting of three different bent porphyrin(2.1.2.1) metal complex moieties. The redox properties indicate porphyrin nanobelts demonstrate the multielectron donating and accepting properties, more than nine redox processes.
RESUMO
Stable and simplest expanded porphyrins, π-ring-fused porphyrin(2.1.1.1)s and Rh(I) complexes, have been obtained for the first time. Two free bases show chair-shaped molecular conformations, as if reassembled by the halves of porphyrin(1.1.1.1) and porphyrin(2.1.2.1). The insertion of Rh(CO)2 groups induced more twisted molecular conformations. The NMR spectra, X-ray structure, NICS, and ACID of obtained molecules all support their nonaromaticity due to chair-shaped molecular conformations. The protonated and Rh(I) coordination of porphyrin(2.1.1.1)s process red-shifted absorptions in the NIR region.
RESUMO
Novel porphyrin(2.1.2.1) Pd(II) complexes with various aromatic π rings (benzo, naphthalene and thiophene) embedded between dipyrrin units have been synthesized. Their molecular structures and optical and electronic properties were confirmed and fully investigated. These Pd(II) complexes showed moderate to good capacity of singlet oxygen generation under light irradiation.
RESUMO
Bacterial conjugation is a process by which DNA is transferred unidirectionally from a donor cell to a recipient cell. It is the main means by which antibiotic resistance genes spread among bacterial populations. It is crucially dependent upon the elaboration of an extracellular appendage, termed "pilus," by a large double-membrane-spanning secretion system termed conjugative "type IV secretion system." Here we present the structure of the conjugative pilus encoded by the R388 plasmid. We demonstrate that, as opposed to all conjugative pili produced so far for cryoelectron microscopy (cryo-EM) structure determination, the conjugative pilus encoded by the R388 plasmid is greatly stimulated by the presence of recipient cells. Comparison of its cryo-EM structure with existing conjugative pilus structures highlights a number of important differences between the R388 pilus structure and that of its homologs, the most prominent being the highly distinctive conformation of its bound lipid.
Assuntos
Microscopia Crioeletrônica , Proteínas de Fímbrias , Fímbrias Bacterianas , Modelos Moleculares , Plasmídeos , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética , Plasmídeos/metabolismo , Plasmídeos/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Fosfolipídeos/metabolismo , Fosfolipídeos/química , Conjugação Genética , Escherichia coli/metabolismo , Escherichia coli/genética , Ligação ProteicaRESUMO
Aromaticity is one of the most important and widely used concepts in chemistry. Among the various experimentally discovered and theoretically predicted compounds that possess different types of aromaticity, conflicting aromaticity, where aromatic and antiaromatic electron delocalization is present in one molecule simultaneously, remains one of the most controversial and elusive concepts, although theoretically predicted 15 years ago. In this work, we synthesized a novel conflicting aromatic trirhodium complex that contains a σ-aromatic metal fragment surrounded by the π-antiaromatic organic ligand and characterized it by nuclear magnetic resonance spectroscopy, high-resolution mass spectrometry, and X-ray single crystal structure analysis. Experimental characterization and quantum chemical calculations confirm the unique conflicting aromaticity of the synthesized trirhodium molecule. Thus, this novel conflicting aromatic molecule expands the family of aromatic compounds. This discovery will enable researchers to develop and understand the phenomena of conflicting aromaticity in chemistry.
RESUMO
Construction of multi-component heterostructures is an effective strategy for electrocatalysts to improve both the hydrogen evolution reaction (HER) at the cathode and the oxygen evolution reaction (OER) activity at the anode. Herein, an efficient bifunctional electrocatalyst towards overall water/seawater splitting (OW/SS) is reported with strategy of heterostructure construction (ruthenium/nickel phosphorus) on nickel hydroxide (Ni(OH)2). With the unique hydrolysis layer (Ni(OH)2), the processes of H2O hydrolysis and the adsorption/desorption of H*/O-containing intermediates (OH, O, OOH) were greatly boosted by Ru and P sites, which acted as the catalytic active centers of OER and HER, respectively. In addition, the electronic structure reconfiguration was realized through the strong interaction between multi-interfaces. For alkaline HER at the current density of 10 mA cm-2, the overpotential of Ru-P-Ni(OH)2/NF (denoted as RNPOH/NF) was 98 mV, whereas just 230 mV of overpotential was essential to stimulate alkaline OER at the current density of 20 mA cm-2. Specifically, as a bifunctional electrocatalyst towards overall water splitting, RNPOH/NF deserves cell voltages of 1.7/1.92 V and 1.75/1.94 V, respectively, to activate current densities of 50/100 mA cm-2 in alkaline water/seawater systems, together with a good durability of 12 h. This work contributes insights to the development of bifunctional electrocatalysts for overall water/seawater splitting.
RESUMO
Electrochemical water splitting is a possible way of realizing sustainable and clean hydrogen production but is challenging, because a highly active and durable electrocatalyst is essential. In this work, we integrated heterogeneous engineering and vacancy defect strategies to design and fabricate a heterostructure electrocatalyst (CoPv-MoxPv/CNT) with abundant phosphorus vacancies attached to carbon nanotubes (CNTs). The vacancy defects enabled the optimization of the electronic structure; thereby, the electron-rich low-valent metal sites enhanced the ability of nonmetallic P to capture proton H. Meanwhile, the heterogeneous interface between bimetallic phosphides and CNTs realized rapid electron transfer. In addition, the Co, Mo, and P active species in the electrocatalytic process exposed increased amounts of active sites featuring porous nanosheet structures, which facilitated the adsorption of reaction intermediates and thus enhanced the hydrogen evolution reaction performance. In particular, the optimized CoPv-MoxPv/CNT catalyst possesses an overpotential of 138 mV at a current density of 10 mA cm-2 and long-term stability for 24 h. This work offers insights and possibilities for the engineering and exploration of transition metal-based electrocatalysts through combining multiple synergistic strategies.
RESUMO
Stabilization of hexaphyrin(1.0.1.0.1.0) (named "rosarin") in its 25π radical state is achieved using a hetero-bimetal-coordination strategy. The antiaromatic BF2 complex B-1 was first synthesized, and then rhodium ion was inserted into B-1 to produce the BF2/Rh(CO)2 mixed complex Rh-B-1 as a highly air-stable radical. The structures of B-1 and Rh-B-1 were determined by single-crystal X-ray diffractions, and the antiaromatic or radical character was identified by various spectroscopy evidence and theoretical calculations. Rh-B-1 exhibits excellent redox properties, enabling amphoteric aromatic-antiaromatic conversion to their 24/26π states. Compared to the 24/26π conjugation systems on the same skeleton, Rh-B-1 has the narrowest electrochemical and optical band gaps, with the longest absorption band at 1010â nm. The ring-current analysis reveals intense paratropic currents for B-1 and co-existing diatropic-paratropic currents for Rh-B-1. This hetero-bimetal-coordination system provides a novel platform for organic radical stabilization on porphyrinoids, showing the prospect of modulating ligand oxidation states through rational coordination design.
RESUMO
The development of efficient molecular catalysts for the electrocatalytic hydrogen evolution reaction (HER) is very necessary and important for fuel cells. In this work, we report a new benzene-fused porphyrin(2.1.2.1) array, BPD, with a unique S-shaped molecular conformation. The electrochemistry of BPD displays multielectron donating and accepting properties owing to the two porphyrin(2.1.2.1) blocks and degenerate molecular orbitals. The electrocatalytic HER activity of BPD is remarkably higher-that is, BPD exhibited lower overpotential, faster HER kinetics, faster charge transfer kinetics, and extended catalytic stability-than that of the porphyrin(2.1.2.1) copper complex monomer.
RESUMO
Four new non-planar and non-aromatic porphyrin organopalladium complexes were synthesized. Conformational structures and optical and electronic properties of the obtained organopalladium complexes containing meso-substituted phenyl, p-tert-butylphenyl, or pentafluorophenyl groups were fully investigated. These complexes showed potent capacity for singlet oxygen (1O2) generation under blue-light irradiation, and the 1O2 quantum yields were in the range of 41%-56%, which were comparable to that of Ru(bpy)3Cl2 (57%), and such potency made these organopalladium complexes potential 1O2 photo sensitizers for photodynamic therapy.
RESUMO
Two peripheral functionalized clamp-shaped cobalt porphyrin(2.1.2.1) complexes were synthesized, and their electrocatalytic ORR abilities were investigated. The crystal data and optical and redox properties of them were revised by peripheral modification. The ORR capacities and DFT calculations of F5PhCo and F5NCo suggest superior selectivity for the 4e- ORR pathway. This work further confirms the clamp-shaped cobalt porphyrin complexes are ideal Co-N4 ORR catalysts.
RESUMO
Serious water contamination induced by massive discharge of cadmium(II) ions is becoming an emergent environmental issue due to high toxicity and bioaccumulation; thus, it is extremely urgent to develop functional materials for effectively treating with Cd2+ from wastewater. Benefiting from abundant binding sites, simple preparation process, and adjustable structure, UiO-66-type metal-organic frameworks (MOFs) had emerged as promising candidates in heavy metal adsorption. Herein, monolithic UiO-66-(COOH)2-functionalized cellulose fiber (UCLF) adsorbents were simply fabricated by incorporating MOFs into cellulose membranes through physical blending and self-entanglement. A two-dimensional structure was facilely constructed by cellulose fibers from sustainable biomass agricultural waste, providing a support platform for the integration of eco-friendly UiO-66-(COOH)2 synthesized with lower temperature and toxicity solvent. Structure characterization and bath experiments were performed to determine operational conditions for the maximization of adsorption capacity, thereby bringing out an excellent adsorption capacity of 96.10 mg/g. UCLF adsorbent holding 10 wt % loadings of UiO-66-(COOH)2 (UCLF-2) exhibited higher adsorption capacity toward Cd2+ as compared to other related adsorbents. Based on kinetics, isotherms, and thermodynamics, the adsorption behavior was spontaneous, exothermic, as well as monolayer chemisorption. Coordination and electrostatic attraction were perhaps mechanisms involved in the adsorption process, deeply unveiled by the effects of adsorbate solution pH and X-ray photoelectron spectroscopy. Moreover, UCLF-2 adsorbent with good mechanical strength offered a structural guarantee for the successful implementation of practical applications. This study manifested the feasibility of UCLF adsorbents used for Cd2+ adsorption and unveiled a novel strategy to shape MOF materials for wastewater decontamination.
RESUMO
Novel hybrid porphyrin(2.1.2.1)s and their boron and copper complexes were synthesized using the "toy bricks" synthetic method. Crystal data, frontier molecular orbital calculations, and electrostatic potential surface maps reveal that hybridization in the porphyrin(2.1.2.1) donor-acceptor unit controls the selective coordination of BF2.
RESUMO
1ReHâ¢Cl, a highly robust and antiaromatic rhenium(I) complex of triarylrosarin, is synthesized. The 1H NMR spectrum of 1ReHâ¢Cl shows upfield-shifted pyrrole protons and highly downfield-shifted inner protons that confirm its antiaromatic nature, with density functional theory calculations strongly supporting this interpretation. Antiaromatic 1ReHâ¢Cl absorbs from the UV to near-IR region of the optical spectrum; cyclic voltammetry, thin-layer UV-vis spectroelectrochemistry, and spin-density distributions clearly reveal that the rosarin backbone of 1ReHâ¢Cl undergoes redox chemistry. The X-ray structure of 1ReHâ¢Cl shows a fully coordinated and protonated inner cavity that effectively prevents proton-coupled electron transfer when treated with an acid. A remarkably negative NICS(0) value, clockwise anisotropy of the induced current density ring current, and the aromatic shielded inner cavity in the 2D ICSS(0) map reveal that the T1 state of 1ReHâ¢Cl is aromatic based on Baird's rule.
RESUMO
The molecular structure, electrochemistry, spectroelectrochemistry and electrocatalytic oxygen reduction reaction (ORR) features of two CoII porphyrin(2.1.2.1) complexes bearing Ph or F5 Ph groups at the two meso-positions of the macrocycle are examined. Single crystal X-ray analysis reveal a highly bent, nonplanar macrocyclic conformation of the complex resulting in clamp-shaped molecular structures. Cyclic voltammetry paired with UV/Vis spectroelectrochemistry in PhCN/0.1â M TBAP suggest that the first electron addition corresponds to a macrocyclic-centered reduction while spectral changes observed during the first oxidation are consistent with a metal-centered CoII /CoIII process. The activity of the clamp-shaped complexes towards heterogeneous ORR in 0.1â M KOH show selectivity towards the 4e- ORR pathway giving H2 O. DFT first-principle calculations on the porphyrin catalyst indicates a lower overpotential for 4e- ORR as compared to the 2e- pathway, consistent with experimental data.
RESUMO
Planar Ni(II) porphyrinoid complexes have been widely used in electrochemical carbon dioxide reduction reaction and oxygen reduction reaction as well as hydrogen evolution reaction (HER). However, nonplanar Ni(II) tetra-pyrrolic complexes have not been thoroughly investigated thus far. In this study, three highly bent bis(dipyrrin) Ni(II) complexes have been synthesized to investigate their structure, electronic property, and electrocatalytic HER activities. Cyclic voltammetry and thin-layer UV-visible spectroelectrochemistry studies revealed four redox processes, yielding two reduced species as the final products. The ic/ip values of phenyl- and pentafluorophenyl-bearing bis(dipyrrin) Ni(II) complexes were >30 when trifluoroacetic acid was used as the proton source, and their Faradaic efficiencies for H2 generation were >93%. Density functional theory calculations of the HERs revealed low endothermic energies of bent bis(dipyrrin) Ni(II) complexes.