Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(33): e202306719, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37335924

RESUMO

Due to its high reactivity and oxidative strength, singlet oxygen (1 O2 ) is used in a variety of fields including organic synthesis, biomedicine, photodynamic therapy and materials science. Despite its importance, the controlled trapping and release of 1 O2 is extremely challenging. Herein, we describe a one-dimensional coordination polymer, CP1, which upon irradiation with visible light, transforms 3 O2 (triplet oxygen) to 1 O2 . CP1 consists of CdII centers bridged by 9,10-bis((E)-2-(pyridin-4-yl)vinyl)anthracene ligands which undergo a [4+2] cycloaddition reaction with 1 O2 , resulting in the generation of CP1-1 O2 . Using microwave irradiation, CP1-1 O2 displays efficient release of 1 O2 , over a period of 30 s. In addition, CP1 exhibits enhanced fluorescence and has an oxygen detection limit of 97.4 ppm. Theoretical calculations reveal that the fluorescence behaviour is dominated by unique through-space conjugation. In addition to describing a highly efficient approach for the trapping and controlled release of 1 O2 , using coordination polymers, this work also provides encouragement for the development of efficient fluorescent oxygen sensors.

2.
Angew Chem Int Ed Engl ; 62(41): e202306048, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37186135

RESUMO

Molecular crystals with the ability to transform light energy into macroscopic mechanical motions are a promising class of materials with potential applications in actuating and photonic devices. In regard to such materials, coordination polymers that exhibit dynamic photomechanical motion, associated with a phase transition, are unknown. Herein, we report an intriguing photoactive, one-dimensional ZnII coordination polymer, 1, derived from 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene and 3,5-difluorobenzoate. Single crystals of 1 under UV light irradiation exhibit rapid shrinking and bending, violent bursting-jumping, splitting, and cracking behavior. Single-crystal X-ray diffraction analysis and 1 H NMR spectroscopy reveal an unusual photoinduced phase transition involving a single-crystal-to-single-crystal [2+2] cycloaddition reaction that results in photomechanical responses. Interestingly, crystals of 1, which are triclinic with space group P 1 ‾ ${P\bar{1}}$ , are transformed into a higher symmetry, monoclinic cell with space group C2/c. This process represents a rare example of symmetry enhancement upon photoirradiation. The photomechanical activity is likely due to the sudden release of stress associated with strained molecular geometries and significant solid-state molecular movement arising from cleavage and formation of chemical bonds. A composite membrane fabricated from 1 and polyvinyl alcohol (PVA) also displays interesting photomechanical behavior under UV light illumination, indicating the material's potential as a photoactuator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA