Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
CNS Neurosci Ther ; 30(2): e14602, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332652

RESUMO

OBJECTIVE: We aimed to explore the value of magnetoencephalography in the presurgical evaluation of patients with posterior cortex epilepsy. METHODS: A total of 39 patients with posterior cortex epilepsy (PCE) and intact magnetoencephalography (MEG) images were reviewed from August 2019 to July 2022. MEG dipole clusters were classified into single clusters, multiple clusters, and scatter dipoles based on tightness criteria. The association of the surgical outcome with MEG dipole classifications was evaluated using Fisher's exact tests. RESULTS: Among the 39 cases, there were 24 cases of single clusters (61.5%), nine cases of multiple clusters (23.1%), and six cases of scattered dipoles (15.4%). Patients with single dipole clusters were more likely to become seizure-free. Among single dipole cluster cases (n = 24), complete MEG dipole resection yielded a more favorable surgical outcome than incomplete resection (83.3% vs. 16.7%, p = 0.007). Patients with concordant MRI and MEG findings achieved a significantly more favorable surgical outcome than discordant patients (66.7% vs. 33.3%, p = 0.044), especially in single dipole cluster patients (87.5% vs. 25.0%, p = 0.005). SIGNIFICANCE: MEG can provide additional valuable information regarding surgical candidate selection, epileptogenic zone localization, electrode implantation schedule, and final surgical planning in patients with posterior cortex epilepsy.


Assuntos
Epilepsia , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Eletroencefalografia/métodos , Resultado do Tratamento , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Prognóstico , Imageamento por Ressonância Magnética
2.
J Nutr Biochem ; 126: 109585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253109

RESUMO

Inflammatory bowel disease (IBD) is a condition characterized by disrupted intestinal barrier function, abnormal immune response, and mucosal structure loss. This study evaluated the beneficial role of purple potato (PP) supplementation against IBD symptoms using a murine model of dextran sulfate sodium (DSS)-induced colitis, and further explored the underlying mechanisms. Six-week-old C57BL/6J male mice were randomized into two groups and fed a standard rodent diet with or without 10% PP powder for 7 weeks. At the 5th week of dietary supplements, mice in each group were further divided into two subgroups and were either induced with or without 2.5% DSS induction for 7 days, followed by 7 days of recovery. Data showed that PP supplementation ameliorated the disease activity index in DSS-treated mice and reversed the colonic structure loss, mucosal damage, macrophage infiltration, and pro-inflammatory cytokine secretion induced by DSS in the colonic tissue. PP supplementation also restored the levels of tight junction proteins and caudal type homeobox 2 in DSS-treated mice. Furthermore, dietary PP enhanced peroxisome proliferator-activated receptor-γ coactivator-1α signaling pathway, mitochondrial biogenesis, mitochondrial proteostasis, and protein-folding capacity. In summary, dietary PP ameliorated DSS-induced colitis and improved gut structures and barrier function, which was associated with improved mitochondrial function. These results support further investigation of PP as a potential dietary intervention for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Solanum tuberosum , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Suplementos Nutricionais , Colo/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças
3.
Int J Biol Macromol ; 256(Pt 1): 128300, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992925

RESUMO

Nanocarriers play an important role in enhancing the efficacy of antibiotics against biofilms by improving their penetration and prolonging retention in pathogenic biofilms. Herein, the multifunctional nanocarriers including nanospheres (NS) and nanotubes (NT) with a high biocompatibility and biodegradability were prepared through self-assembly of partially hydrolyzed α-lactalbumin. The effects of these two different shaped nanocarriers on the delivery of antibiotics for biofilm treatment were examined by conducting in vitro antibiofilm experiment and in vivo infected wound model. The strong affinity of NS and NT for the bacterial surface allows antibiotics to be concentrated in the bacteria. Notably, the high permeability of NT into biofilms facilitates deeper penetration and the easier diffusion of loaded antibiotics within the biofilm. Furthermore, the acidic biofilm environment triggers the release of antibiotics from the NT, resulting in the accumulation of high local antibiotic concentrations. Therefore, NT could efficiently clean and inhibit the biofilm formation while also destroying the mature biofilms. In a S. aureus infected wound animal model, treatment with antibiotic-loaded NT demonstrated accelerated healing of S. aureus infected wounds when compared to free antibiotic treatment. These findings indicate that NT nanocarrier strategy is promising for treating bacterial biofilm infections, offering the potential for lower antibiotics dosages and preventing the overuse of antibiotics.


Assuntos
Infecções Bacterianas , Staphylococcus aureus , Animais , Portadores de Fármacos/farmacologia , Antibacterianos , Biofilmes , Infecções Bacterianas/tratamento farmacológico , Bactérias , Testes de Sensibilidade Microbiana
4.
PLoS One ; 18(9): e0291520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37699034

RESUMO

Pathogenic Escherichia coli and Salmonella enterica pose serious public health threats due to their ability to cause severe gastroenteritis and life-threatening sequela, particularly in young children. Moreover, the emergence and dissemination of antibiotic resistance in these bacteria have complicated control of infections. Alternative strategies that effectively target these enteric pathogens and negate or reduce the need of antibiotics are urgently needed. Such an alternative is the CRISPR-Cas9 system because it can generate sequence-specific lethal double stranded DNA breaks. In this study, two self-transmissible broad host range conjugative plasmids, pRK24 and pBP136, were engineered to deliver multiplexed CRSIPR-Cas9 systems that specifically target Enterohemorrhagic and Enteropathogenic strains of E. coli (EHEC and EPEC), S. enterica, and blaCMY-2 antibiotic resistance plasmids. Using in vitro mating assays, we show that the conjugative delivery of pRK24-CRISPR-Cas9 carrying guide RNAs to the EPEC/EHEC eae (intimin) gene can selectively kill enterohemorrhagic E. coli O157 eae+ cells (3 log kill at 6 h) but does not kill the isogenic Δeae mutant (P<0.001). Similar results were also obtained with a pBP136 derivative, pTF16, carrying multiplexed guide RNAs targeting E. coli eae and the S. enterica ssaN gene coding for the type III secretion ATPase. Another pBP136 derivative, TF18, carries guide RNAs targeting S. enterica ssaN and the antibiotic resistance gene, blaCMY-2, carried on the multi-drug resistant pAR06302. Introduction of pTF18 into bacteria harboring pAR06302 showed plasmids were cured at an efficiency of 53% (P<0.05). Using a murine neonate EPEC infection model, pTF16 was delivered by a murine derived E. coli strain to EPEC infected mice and showed significant reductions of intestinal EPEC (P<0.05). These results suggest that establishing conjugative CRISPR-Cas9 antimicrobials in the intestinal microbiome may provide protection from enteric pathogens and reduce antibiotic resistance without disrupting the normal microbiota.


Assuntos
Escherichia coli Êntero-Hemorrágica , Escherichia coli O157 , Gastroenterite , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Engenharia , Escherichia coli Êntero-Hemorrágica/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos
5.
Hum Brain Mapp ; 44(12): 4498-4511, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318703

RESUMO

Our understanding of cingulate cortex function is limited. As a method for locating the epileptogenic zone, direct electrical cortical stimulation (ECS) provides an opportunity to understand the functional localization of the cingulate cortex. This study aimed to learn more about the function of the cingulate cortex by analyzing a large body of data from our center and by reviewing existing literature on cortical mapping. We retrospectively analyzed the ECS data of 124 patients with drug-resistant epilepsy who had undergone electrode implantation in the cingulate cortex. The standard stimulation parameters included a biphasic pulse and bipolar stimulation at 50 Hz. Furthermore, we reviewed existing studies on cingulate responses elicited by the ECS and compared them with our results. A total of 329 responses were evoked in 276 contacts using ECS. Of these, 196 were physiological functional responses, which included sensory, affective, autonomic, language, visual, vestibular, and motor responses, along with a few other sensations. Sensory, motor, vestibular, and visual responses were concentrated in the cingulate sulcus visual area (CSv). Furthermore, 133 epilepsy-related responses were evoked, most of which were concentrated in the ventral cingulate cortex. No responses were evoked by 498 contacts. Furthermore, the comparison of our ECS results with those reported in 11 comprehensive reviews revealed that the cingulate cortex is involved in complicated functions. The cingulate cortex is involved in sensory, affective, autonomic, language, visual, vestibular, and motor functions. The CSv is an integrating node of sensory, motor, vestibular, and visual systems.


Assuntos
Epilepsia , Giro do Cíngulo , Humanos , Giro do Cíngulo/fisiologia , Estudos Retrospectivos , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Epilepsia/terapia , Estimulação Elétrica , Eletroencefalografia
6.
EMBO Rep ; 24(6): e54600, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37073791

RESUMO

Inflammasome signaling is a central pillar of innate immunity triggering inflammation and cell death in response to microbes and danger signals. Here, we show that two virulence factors from the human bacterial pathogen Clostridium perfringens are nonredundant activators of the NLRP3 inflammasome in mice and humans. C. perfringens lecithinase (also known as phospolipase C) and C. perfringens perfringolysin O induce distinct mechanisms of activation. Lecithinase enters LAMP1+ vesicular structures and induces lysosomal membrane destabilization. Furthermore, lecithinase induces the release of the inflammasome-dependent cytokines IL-1ß and IL-18, and the induction of cell death independently of the pore-forming proteins gasdermin D, MLKL and the cell death effector protein ninjurin-1 or NINJ1. We also show that lecithinase triggers inflammation via the NLRP3 inflammasome in vivo and that pharmacological blockade of NLRP3 using MCC950 partially prevents lecithinase-induced lethality. Together, these findings reveal that lecithinase activates an alternative pathway to induce inflammation during C. perfringens infection and that this mode of action can be similarly exploited for sensing by a single inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Clostridium perfringens/metabolismo , Fatores de Virulência , Inflamação , Interleucina-1beta/metabolismo , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
7.
EMBO J ; 42(6): e112558, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36762431

RESUMO

Moraxella catarrhalis is an important human respiratory pathogen and a major causative agent of otitis media and chronic obstructive pulmonary disease. Toll-like receptors contribute to, but cannot fully account for, the complexity of the immune response seen in M. catarrhalis infection. Using primary mouse bone marrow-derived macrophages to examine the host response to M. catarrhalis infection, our global transcriptomic and targeted cytokine analyses revealed activation of immune signalling pathways by both membrane-bound and cytosolic pattern-recognition receptors. We show that M. catarrhalis and its outer membrane vesicles or lipooligosaccharide (LOS) can activate the cytosolic innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3 inflammasome in human and mouse macrophages. This pathway is initiated by type I interferon signalling and guanylate-binding proteins (GBPs). We also show that inflammasomes and GBPs, particularly GBP2, are required for the host defence against M. catarrhalis in mice. Overall, our results reveal an essential role for the interferon-inflammasome axis in cytosolic recognition and immunity against M. catarrhalis, providing new molecular targets that may be used to mitigate pathological inflammation triggered by this pathogen.


Assuntos
Caspases , Inflamassomos , Camundongos , Humanos , Animais , Caspases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Moraxella catarrhalis/metabolismo , Proteínas de Transporte , Imunidade Inata
8.
J Environ Public Health ; 2023: 6547804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761241

RESUMO

Objective: The study aims to explore the correlation mechanism among metacognition, attitude toward physical exercise, and health-related behavior in high school students. Methods: A total of 869 students (17 ± 1.70) from Anhui, Zhejiang, Shandong, and Fujian provinces were selected by stratified sampling to complete the Metacognition Questionnaire, Health-Related Behavior Self-Rating Scale, Attitude Toward Physical Exercise Scale, and Depression-Anxiety-Stress Scale (Simplified Chinese version, DASS-21). Results: (1) Metacognition was negatively predictive of attitude toward physical exercise and health-related behavior (ß = -0.236, P < 0.01; ß = -0.239, P < 0.01) but positively predictive of negative emotion (ß = 0.496, P < 0.01); (2) attitude toward physical exercise was positively predictive of health-related behavior (ß = 0.533, P < 0.01) but negatively predictive of negative emotion (ß = -0.336, P < 0.01); and (3) negative emotion was negatively predictive of health-related behavior (ß = -0.389, P < 0.01). Conclusions: Metacognition not only has a directly predictive effect on health-related behavior but also predicts it through attitude toward physical exercise. Negative emotion also mediates the relationship between metacognition and attitude toward physical exercise.


Assuntos
Metacognição , Humanos , Comportamentos Relacionados com a Saúde , Atitude , Inquéritos e Questionários , Estudantes/psicologia
9.
Crit Rev Food Sci Nutr ; 63(11): 1551-1563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34404306

RESUMO

The innate immune system has developed sophisticated strategies to defense against infections. Host cells utilize the recognition machineries such as toll-like receptors and nucleotide binding and oligomerization domain-like receptors to identify the pathogens and alert immune system. However, some pathogens have developed tactics to evade host defenses, including manipulation of host inflammatory response, interference with cell death pathway, and highjack of phagocytosis signaling for a better survival and colonization in host. Enterohemorrhagic Escherichia coli (EHEC) is a notorious foodborne pathogen that causes severe tissue damages and gastrointestinal diseases, which has been reported to disturb host immune responses. Diverse bioactive compounds such as flavonoids, phenolic acids, alkaloids, saccharides, and terpenoids derived from food varieties and probiotics have been discovered and investigated for their capability of combating bacterial infections. Some of them serve as novel antimicrobial agents and act as immune boosters that harness host immune system. In this review, we will discuss how EHEC, specifically E. coli O157:H7, hijacks the host immune system and interferes with host signaling pathway; and highlight the promising role of food-derived bioactive compounds and probiotics in harnessing host innate immunity and eliminating E. coli O157:H7 infection with multiple strategies.


Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Escherichia coli O157 , Enteropatias , Probióticos , Humanos , Escherichia coli O157/fisiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/microbiologia , Imunidade Inata
10.
Compr Rev Food Sci Food Saf ; 21(5): 4076-4107, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36038529

RESUMO

The use of Jiuqu as a saccharifying and fermenting starter in the production of fermented foods is a very old biotechnological process that can be traced back to ancient times. Jiuqu harbors a hub of microbial communities, in which prokaryotes and eukaryotes cohabit, interact, and communicate. However, the spontaneous fermentation based on empirical processing hardly guarantees the stable assembly of the microbiome and a standardized quality of Jiuqu. This review describes the state of the art, limitations, and challenges towards the application of traditional and omics-based technology to study the Jiuqu microbiome and highlights the need for integrating meta-omics data. In addition, we review the varieties of Jiuqu and their production processes, with particular attention to factors shaping the microbiota of Jiuqu. Then, the potentials of integrated omics approaches used in Jiuqu research are examined in order to understand the assembly of the microbiome and improve the quality of the products. A variety of different approaches, including molecular and mass spectrometry-based techniques, have led to scientific advances in the analysis of the complex ecosystem of Jiuqu. To date, the extensive research on Jiuqu has mainly focused on the microbial community diversity, flavor profiles, and biochemical characteristics. An integrative approach to large-scale omics datasets and cultivated microbiota has great potential for understanding the interrelation of the Jiuqu microbiome. Further research on the Jiuqu microbiome may explain the inherent property of compositional stability and stable performance of a complex microbiota coping with environmental perturbations and provide important insights to reconstruct synthetic microbiota and develop modern intelligent manufacturing procedures for Jiuqu.


Assuntos
Alimentos Fermentados , Microbiota , Fermentação
11.
Food Res Int ; 158: 111488, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840201

RESUMO

Daqu has a rich and diverse microbiota, giving them a suitable biotope for phages. However, the absolute abundances of bacteria and fungi, as well as the phage community characteristics in Daqu, remain unclear. In this study, the microbiota absolute abundance, indigenous phage composition and function, and volatile compound profiles of high-temperature Daqu (HTDQ), medium-temperature Daqu (MTDQ), and low-temperature Daqu (LTDQ) were investigated. Absolute microbiota quantification revealed that there were significant variations in microbial composition and absolute abundance across three types of Daqu. The absolute abundances of the top 30 bacterial genera in LTDQ, MTDQ, and HTDQ were 6.0 × 105, 5.3 × 104, 1.4 × 105 copies/ng DNA, while the top 30 fungal genera had 8.5 × 107, 2.1 × 106, and 6.2 × 105 copies/ng DNA, respectively. LTDQ were enriched in Pantoea, Staphylococcus, and Saccharomycopsis; MTDQ were dominated by Saccharopolyspora, Staphylococcus, Saccharomycopsis, and Aspergillus; HTDQ were dominated by Saccharopolyspora, Bacillus, Byssochlamys, and Saccharomycopsis. Volatile profile analysis revealed that LTDQ, MTDQ, and HTDQ comprised 68, 68, and 75 compounds, respectively, with 39 compounds shared by the three types. Fourteen volatile compounds were identified as highly discriminative features among three types of Daqu, which were closely related to Saccharopolyspora, Thermoactinomyces, Kroppenstedtia, Byssochlamys, and Thermomyces. Metaviromics indicated that Genomoviridae, Mimiviridae and Siphoviridae, and Parvoviridae were the dominant viruses in LTDQ, MTDQ, and HTDQ, respectively. The hosts of phages in Daqu mainly included Lactobacillus, Enterobacter, Pantoea, Bacillus, Pediococcus, and Staphylococcus. Phages may prey on numerous microbes living on Daqu via pathways such as genetic information processing, signaling and cellular processes, and replication and repair. This study highlights the use of absolute quantification to avoid misjudgment of differential taxa in comparative microbiome analysis and provides new insights into the phage community and function in Daqu.


Assuntos
Bacillus , Bacteriófagos , Microbiota , Bacillus/genética , Bactérias , Fermentação
12.
Food Res Int ; 156: 111191, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651047

RESUMO

Wheat-origin microbiota is a critical factor in the assembly of the microbial community during high-temperature Daqu incubation. However, the succession and functional mechanisms of these microbial communities in Daqu are still unclear. This study investigated the shifts in microbiota diversity from the wheat to the end of incubation by the third generation Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing technology. Results indicated that Staphylococcus, Pantoea, Alternaria, and Mycosphaerella were the dominant genera of wheat-origin microbiota while Bacillus and Thermoascus were the most predominant bacterial and fungal genera of Daqu microbiota, respectively. Metabolite detection revealed that volatile organic compounds (VOCs) changed obviously in different incubation stages and the 7th day to the 15th day of incubation was the critical period for the formation of VOCs. The content of non-VOCs, especially sugars, increased steeply in the first four days of incubation. The network analysis between microbes and metabolites showed that Thermoactinomyces and Staphylococcus had opposite correlations with most non-VOCs. Alternaria and Mycosphaerella had strong positive correlations with fructose. As key functional fungal genera in wheat-origin microbiota, Mycosphaerella, Aspergillus, and Alternaria participated in multiple metabolic pathways (gluconeogenesis I, sucrose degradation III, pentose phosphate pathway, 5-aminoimidazole ribonucleotide biosynthesis I, methyl ketone biosynthesis, and GDP-mannose biosynthesis) at the early stage of incubation, which played an important role in the formation of flavors and succession of microbiota. This work highlighted the shifts and functionality of wheat-origin microbiota in Daqu incubation, which can be a guideline to stabilize Daqu quality by wheat-origin microbiota control.


Assuntos
Microbiota , Compostos Orgânicos Voláteis , Bactérias , Fermentação , Temperatura , Triticum , Compostos Orgânicos Voláteis/metabolismo
13.
World J Microbiol Biotechnol ; 38(8): 136, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699787

RESUMO

Biofilm cells exhibit higher resistance than their planktonic counterparts to commonly used disinfectants in food industry. Phenolic acids are promising substitute offering less selective pressure than traditional antibiotics. This study aims to evaluate the inhibitory effects of ferulic acid (FA) and p-coumaric acid (p-CA) on Salmonella Enteritidis biofilm formation and explore the underlying inhibitory mechanisms. The minimal inhibitory concentration (MIC) of FA and p-CA were 1.0 and 0.5 mg/ml, respectively. The sub-inhibitory concentration (1/8 MIC) significantly decreased biofilm formation without growth inhibitory effects. The biomass and extracellular polymeric substances (EPS) of S. Enteritidis biofilm as well as the bacterial swimming and chemotaxis abilities were significantly decreased when exposed to sub-MIC concentrations of FA and p-CA. These two phenolic acids showed high affinity to proteins involved in flagella motility and repressed the S. Enteritidis biofilm formation-related gene expressions. Furthermore, these two phenolic acids maintained high antibiofilm efficiency in simulated food processing conditions. This study provided valuable information of multiple phenotypic and molecular responses of S. Enteritidis to these two phenolic acids.


Assuntos
Ácidos Cumáricos , Salmonella enteritidis , Biofilmes , Ácidos Cumáricos/farmacologia
14.
World J Microbiol Biotechnol ; 38(8): 137, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699790

RESUMO

The superior grade Daqu (S_Daqu) and normal grade Daqu (N_Daqu) have obvious differences in flavor, fracture surface, appearance, etc., which can be accurately grouped by well-trained panel based on their sensory properties. However, the differences in microbial community diversity and metabolites between the S_Daqu and N_Daqu were still unclear. The culture-dependent method, the third generation Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing technology, and nuclear magnetic resonance (NMR) were combined to show the characteristics in microorganisms and metabolites. Results showed that the fungal counts were higher in N_Daqu while the richness of bacterial communities was higher in S_Daqu (P < 0.05). Lentibacillus, Burkholderia, Saccharopolyspora, Thermoascus, and Rasamsonia were the dominant genera of S_Daqu while Staphylococcus, Scopulibacillus, and Chromocleista were the dominant genera in N_Daqu. The content of differential acids, amino acids, and alcohols including fumarate, glucuronate, glycine, 4-carboxyglutamate, and myo-inositol in S_Daqu was higher than that in N_Daqu by 1H NMR coupled with multivariate statistical analysis. The network analysis regarding microbes and metabolites suggested that Saccharopolyspora showed a strong positive correlation with 4-carboxyglutamate while Thermoascus and Chromocleista were highly negatively correlated with alanine and isobutyrate, respectively. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) revealed that Macrococcus and Caulobacter were regarded as bacterial biomarkers in the S_Daqu while Chromocleista was the key fungal genera in N_Daqu. Functionality prediction indicated that the bacteria in S_Daqu were largely involved in more metabolic activities including biosynthesis, degradation, detoxification, and generation of precursor metabolite and energy.


Assuntos
Bebidas Alcoólicas , Microbiota , Bebidas Alcoólicas/microbiologia , Bactérias/metabolismo , Fermentação , Metaboloma , Temperatura
15.
Org Lett ; 24(12): 2409-2413, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35312322

RESUMO

Here, we disclose the divergent total syntheses of representative C18-oxo eburnamine-vincamine alkaloids (+)-eburnaminol, (-)-larutenine, and (-)-cuanzine. Key to the approach is a substrate-controlled iridium-catalyzed asymmetric hydrogenation/lactamization cascade that leads to the formation of the common tetracyclic skeleton with essential cis-C20/C21 stereochemistry (93% yield, 98% ee, >20:1 dr, gram scale). Access to the targeted alkaloids is effected late in the synthesis by implementation of a number of diversity-oriented transformations and late-stage modifications.


Assuntos
Alcaloides , Vincamina , Imidazóis , Irídio , Estereoisomerismo , Sulfonamidas , Tiofenos
16.
Food Res Int ; 154: 111008, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337568

RESUMO

The seasonal spontaneous fermentation depends on the assembly of specific microbiota. However, a knowledge gap remains regarding the seasonal dynamics of microbial community and functionality. This study aimed to investigate the differences in microbial community dynamics during the saccharification process of Fuyu-flavor Baijiu in winter versus summer by employing high-throughput sequencing. It also explored the driving effects of environmental variables on the microbial succession. The environmental temperature of saccharification in summer (29 ± 1 °C) was strikingly different in winter (14 ± 1 °C), leading to a longer incubation time in winter fermentation. The dominant bacterial genera displayed in the early stage of the summer saccharification process were Staphylococcus, unclassified Enterobacteriaceae, and Weissella, whereas the dominant genus was Weissella during the middle stage and Lactobacillus during the late stage of saccharification. In contrast, unclassified Enterobacteriaceae and Weissella were dominant genera throughout the winter saccharification process. In the fungal community, Rhizopus was the dominant genus in summer and winter saccharification. Principal coordinate analysis revealed that the changes in the environmental temperature in winter versus summer had distinct impacts on the microbial community structure. Also, temperature was the key factor driving the succession of bacterial community, whereas pH was the main factor driving the succession of dominant fungi. Predictive gene functionality of bacterial and fungal communities was computed using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 against Kyoto Encyclopedia of Genes and Genomes (KEGG) database and MetaCyc database, respectively. Correlation networks were constructed to better understand the relationships between dominant microbial genera and physicochemical factors during the saccharification process. These results provided new insights into the Baijiu fermentation technology and allowed a theoretical basis for exploring effective management strategies regarding traditional fermentation in response to complex seasonal factors.


Assuntos
Microbiota , Bactérias/genética , Fermentação , Microbiota/genética , Filogenia , Estações do Ano
17.
J Food Prot ; 85(5): 849-858, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271716

RESUMO

ABSTRACT: Providencia rettgeri is an opportunistic foodborne pathogen with a strong biofilm-forming ability in low-nutrition environments. However, information regarding the impact of simulated food processing conditions on P. rettgeri planktonic growth and biofilm formation is limited. Using response surface methodology (RSM), the combined effects of temperature (19 to 37°C), pH (5 to 9), and sodium chloride (NaCl) concentration (0.50 to 2.0%, w/v) were applied to construct planktonic growth and biofilm formation models for P. rettgeri. For both RSM models, an increase in NaCl concentration restricted P. rettgeri growth. Planktonic growth and biofilm formation were maximum at 27.83 and 25.41°C, respectively. Tannic acid (TA) is a highly effective antibacterial agent that inhibited planktonic and biofilm P. rettgeri under optimal growth conditions. The viability of P. rettgeri cells was decreased by TA treatment, which caused destruction of the cell membrane and production of endogenous reactive oxygen species. TA significantly inactivated P. rettgeri biofilms, as verified by observation. The obtained models in this study may be useful for describing the impact of temperature, pH, and NaCl concentration on the growth by P. rettgeri in the food processing environment and better understanding the impacts of food-related conditions on bacterial planktonic growth and biofilm formation. These results obtained for P. rettgeri planktonic cells and biofilms can provide a framework for removal strategies for other foodborne pathogens.


Assuntos
Plâncton , Taninos , Biofilmes , Providencia , Cloreto de Sódio/farmacologia , Taninos/farmacologia
18.
Chem Commun (Camb) ; 58(9): 1402-1405, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34994369

RESUMO

In the work reported herein, the concise and enantioselective total synthesis of the Schizozygine alkaloid (-)-strempeliopine was developed. This synthetic strategy featured the palladium-catalyzed decarboxylative asymmetric allylic alkylation of N-benzoyl lactam to set up the absolute configuration at the C20 position, a highly diastereoselective one-pot Bischler-Napieralski/lactamization and iminium reduction sequence for the construction of the pentacyclic core structure, and the late-stage dearomative addition of indole, leading to the otherwise difficult-to-achieve hexacyclic indoline framework with complete control of four neighbouring stereocenters.

19.
Food Microbiol ; 102: 103922, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809948

RESUMO

This study evaluated the impact of 1-methylcyclopropene (1-MCP), an ethylene synthesis inhibitor, followed by long-term commercial cold storage with low-dose gaseous ozone on the microbiological safety and quality of fresh apples. Granny Smith apples were inoculated with or without Listeria innocua, treated with or without 1.0 mg/L 1-MCP for 24 h, then subjected to commercial cold storage conditions including refrigerated air (RA, 0.6 °C, control), controlled atmosphere (CA, 2% O2, 1% CO2, 0.6 °C), and CA with 51-87 µg/L ozone gas for up to 36 weeks. RA storage reduced L. innocua on apples by up to 3.6 log10 CFU/apple. CA had no advantage over RA in controlling Listeria. Continuous ozone gas application resulted in an additional ∼2.0 log10 CFU/apple reduction of L. innocua (total reduction up to 5.7 log10 CFU/apple) and suppressed native bacteria and fungi. Treatment with 1-MCP had a minor impact on survival of L. innocua or background microbiota on apples, while it significantly delayed fruit ripening and reduced the incidence of superficial scald and internal browning. In summary, 1-MCP treatment followed by CA storage with low-dose continuous ozone gas can effectively control Listeria on fresh apples and delay fruit ripening.


Assuntos
Ciclopropanos/farmacologia , Armazenamento de Alimentos , Frutas/microbiologia , Listeria , Malus , Ozônio , Malus/microbiologia , Ozônio/farmacologia
20.
Int J Biol Macromol ; 195: 515-522, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920064

RESUMO

Multi-drug resistance and biofilm formation are a growing problem in the treatment of Staphylococcus aureus contamination. Advances in nanotechnology allow the synthesis of metal nanoparticles that can be assembled into complex architectures for controlling bacterial growth. This study aims to investigate the ultrasonic-assisted green synthesis of silver nanoparticles (AgNPs) by tannic acid (TA) and sodium alginate (Na-Alg) as the reducing and stabilizing agents, respectively, and evaluation of their antibacterial and antibiofilm activities. The UV-Vis spectroscopy and transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), zetasizer, FT-IR spectroscopy, and X-ray diffraction (XRD) studies showed that the optimum produces were spherical, stable, and monodispersed AgNPs with an average size of particle sizes of 18.52 ± 0.07 nm. The antibacterial and antibiofilm activities of the AgNPs loaded TA/Na-Alg constructs against S. aureus ATCC 6538 were investigated. The minimum inhibitory concentration (MIC) of the AgNPs was 31.25 µg/mL. After exposure to the AgNPs, planktonic S. aureus showed irreversible cell membrane damage, decreased cell viability, and changes in cellular morphology. In addition, the AgNps significantly inhibited S. aureus biofilm formation at 1/32 MIC. The biofilm elimination rate was 58.87% after exposure to MIC AgNPs. The results suggested that the development of AgNPs loaded TA/Na-Alg constructs with biomedical potentialities obtained through a simple, green, and cost-effective approach, may be suitable for the formulation of a new strategy for combating S. aureus.


Assuntos
Alginatos/química , Antibacterianos/farmacologia , Portadores de Fármacos/química , Nanopartículas Metálicas/química , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Taninos/química , Antibacterianos/química , Fenômenos Químicos , Técnicas de Química Sintética , Portadores de Fármacos/síntese química , Química Verde , Testes de Sensibilidade Microbiana , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA