Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biomed Pharmacother ; 174: 116548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599064

RESUMO

BACKGROUND: Various heart diseases ultimately lead to chronic heart failure (CHF). In CHF, the inflammatory response is associated with pyroptosis, which is mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome. Fu Xin decoction (FXD) is commonly used in clinical practice to treat CHF and improve inflammatory conditions. However, the specific pharmacological mechanisms of action for FXD in these processes have yet to be fully understood. PURPOSE: The objective of this study was to examine the protective mechanism of FXT against CHF, both in H9c2 cells and mice. METHOD: A CHF mouse model was established, and the effect of FXD was observed via gavage. Cardiac function was evaluated using echocardiography, while serum BNP and LDH levels were analyzed to assess the severity of CHF. Hematoxylin and eosin staining (H&E) and Masson staining were performed to evaluate myocardial pathological changes, and TdT-mediated dUTP Nick-End Labeling staining was used to detect DNA damage. Additionally, doxorubicin was utilized to induce myocardial cell injury in H9c2 cells, establishing a relevant model. CCK8 was used to observe cell viability and detect LDH levels in the cell supernatant. Subsequently, the expression of pyroptosis-related proteins was detected using immunohistochemistry, immunofluorescence, and western blotting. Finally, the pharmacological mechanism of FXD against CHF was further validated by treating H9c2 cells with an NLRP3 activator and inducing NLRP3 overexpression. RESULT: According to current research findings, echocardiography demonstrated a significant improvement of cardiac function by FXD, accompanied by reduced levels of BNP and LDH, indicating the amelioration of cardiac injury in CHF mice. FXD exhibited the ability to diminish serum CRP and MCP inflammatory markers in CHF mice. The results of HE and Masson staining analyses revealed a significant reduction in pathological damage of the heart tissue following FXD treatment. The CCK8 assay demonstrated the ability of FXD to enhance H9c2 cell viability, improve cell morphology, decrease LDH levels in the cell supernatant, and alleviate cell damage. Immunohistochemistry, Western blotting, and immunofluorescence staining substantiated the inhibitory effect of FXD on the NLRP3/caspase-1/GSDMD pyroptosis signaling pathway in both CHF and H9c2 cell injury models. Ultimately, the administration of the NLRP3 activator (Nigericin) and the overexpression of NLRP3 counteract the effects of FXD on cardiac protection and pyroptosis inhibition in vitro. CONCLUSION: FXD exhibits a cardioprotective effect, improving CHF and alleviating pyroptosis by inhibiting the NLRP3/caspase-1/GSDMD pathway.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Camundongos , Caspase 1/efeitos dos fármacos , Caspase 1/metabolismo , Linhagem Celular , Doença Crônica , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Gasderminas/efeitos dos fármacos , Gasderminas/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Int J Gen Med ; 17: 1533-1543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680194

RESUMO

Purpose: The association between serum uric acid (SUA) and atrial fibrillation (AF) has been widely focused on and studied in recent years. However, the exact association between SUA and AF is unclear, and the effect of gender on the association between SUA levels and AF has been controversial. This study aimed to investigate the association between SUA levels and non-valvular AF (NVAF) and the potential effect of gender on it. Patients and Methods: A total of 866 NVAF patients (463 males, age 69.44 ± 8.07 years) and 646 sex-matched control patients in sinus rhythm, with no history of arrhythmia were included in this study. t-test, ANOVA, and chi-square test were used for baseline data analysis. The receiver operating characteristic curve, logistic regression and Pearson correlation analysis were used for correlation analysis. Results: Compared to controls, NVAF patients exhibited higher SUA (P<0.001). After adjusting for confounders of NVAF, SUA remained significantly associated with NVAF, regardless of gender (OR= 1.31, 95% CI 1.18-1.43, P<0.001). SUA demonstrated higher predictability and sensitivity in predicting the occurrence of female NVAF compared to male (area under the curve was 0.68 (95% CI 0.64-0.72, P<0.001), sensitivity 87.3%), with the optimal cut-off point identified as 5.72 mg/dL. Furthermore, SUA levels correlated with APOA1, Scr and NT-proBNP in NVAF patients. SUA levels varied significantly among NVAF subtypes. Conclusion: High SUA levels were independently associated with NVAF, regardless of gender. SUA exhibited higher predictability and sensitivity in predicting the occurrence of NVAF in females compared to males. High SUA levels may affect other NVAF-related factors and participate in the pathophysiological process of NVAF.

3.
Sci Rep ; 13(1): 3488, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859608

RESUMO

Heart failure is the final destination of most cardiovascular diseases, and its complex molecular mechanisms remain largely uncertain. This study aimed to systematically investigate the underlying molecular mechanisms and diagnostic and therapeutic targets of heart failure using bioinformatics. We obtained 8 healthy samples and 8 heart failure samples from GSE8331 and GSE76701. After removing the batch effect, we performed a differential analysis on it and obtained 185 differentially expressed ID. The results of enrichment analysis showed that the molecular mechanisms of heart failure were mostly related to immune, inflammation, and metabolism-related pathways. Immune cell infiltration analysis showed that the degree of infiltration of Tgd cells and Neurons was significantly enriched in heart failure samples, whereas pDCs and NKTs were in healthy tissue samples. We obtained Hub genes including EGR1, EGR2, FOS and FOSB by PPI network analysis. We established a 4-gene diagnostic model with Hub gene, and validated it in GSE21610 and GSE57338, and evaluated the discriminative ability of Hub gene by ROC curve. The 4-gene diagnostic model has an AUC value of 0.775 in GSE21610 and 0.877 in GSE57338. In conclusion, we explored the underlying molecular mechanisms of heart failure and the immune cell infiltration environment of failing myocardium by performing bioinformatic analysis of the GEO dataset. In addition, we identified EGR1, EGR2, FOS and FOSB as potential diagnostic biomarkers and therapeutic targets for heart failure. More importantly, a diagnostic model of heart failure based on these 4 genes was developed, which leads to a new understanding of the pathogenesis of heart failure and may be an interesting target for future in-depth research.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Miocárdio , Biomarcadores , Biologia Computacional
4.
Exp Ther Med ; 24(6): 748, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561967

RESUMO

Since ferroptosis is considered to be a notable cause of cardiomyocyte death, inhibiting ferroptosis has become a novel strategy in reducing cardiac cell death and improving cardiopathic conditions. Therefore, the aim of the present study was to search for ferroptosis-related hub genes and determine their diagnostic value in myocardial infarction (MI) to aid in the diagnosis and treatment of the disease. A total of 10,286 DEGs were identified, including 6,822 upregulated and 3.464 downregulated genes in patients with MI compared with healthy controls. After overlapping with ferroptosis-related genes, 128 ferroptosis-related DEGs were obtained. WGCNA successfully identified a further eight functional modules, from which the blue module had the strongest correlation with MI. Blue module genes and ferroptosis-related differentially expressed genes were overlapped to obtain 20 ferroptosis-related genes associated with MI. Go and KEGG analysis showed that these genes were mainly enriched in cellular response to chemical stress, trans complex, transferring, phosphorus-containing groups, protein serine/threonine kinase activity, FoxO signaling pathway. Hub genes were obtained from 20 ferroptosis-related genes through the PPI network. The expression of hub genes was found to be down-regulated in the MI group. Finally, the miRNAs-hub genes and TFs-hub genes networks were constructed. The GSE141512 dataset and the use of RT-qPCR assays on patient blood samples were used to confirm these results. The results showed that ATM, PIK3CA, MAPK8, KRAS and SIRT1 may play key roles in the development of MI, and could therefore be novel markers or targets for the diagnosis or treatment of MI.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36467554

RESUMO

Objective: Coronary heart disease (CHD) is the leading cause of death from cardiovascular disease and has become an important public health problem worldwide. Guizhi Gancao Decoction (GGD) has been shown to be used in the treatment of CHD with good efficacy, but its specific therapeutic mechanism and active ingredients have not been fully clarified. This study aims to identify the active compounds and key targets of GGD in the treatment of CHD, explore the therapeutic mechanism of GGD, and provide candidate compounds for anti-CHD drug development. Methods: The main compounds of GGD were determined by UPLC-MS/MS analysis and screened by SwissADME. The corresponding targets of GGD compounds were obtained from SwissTargetPrediction, and the targets of CHD were obtained from the HERB and GeneCards databases. The STRING 11.5 database was used to analyze the PPI (Protein-Protein Interactions) network of potential therapeutic targets of GGD compounds. Cytoscape 3.7.2 was used to construct target-related networks and find core targets. The GEO database was used to validate the differential expression of core targets. The PANTHER Classification System was used to functionally classify potential therapeutic targets for GGD. The GO biological process analysis and KEGG pathway analysis of targets were completed by DAVID 6.8 database. AutoDockTools 1.5.6 and PyMol 2.5.2 were used to perform molecular docking of core targets with the active GGD compounds. Results: 7 active GGD compounds were obtained based on UPLC-MS/MS and pharmacological parameter evaluation, which corresponded to 131 CHD-related targets. Among them, EGFR, MAPK3, RELA, CCND1, ESR1, PTGS2, NR3C1, CYP3A4, MMP9, and PTPN11 were considered core targets. According to the targets related to CHD, glycyrrhetinic acid, liquiritigenin, and schisandrin are considered key active ingredients. GO biological process and KEGG analysis indicated that the potential targets of GGD in the treatment of CHD involve a variety of biological processes and therapeutic mechanisms. Molecular docking results showed that both the core targets and the corresponding compounds had the good binding ability. Conclusions: This study contributes to a more comprehensive understanding of the therapeutic mechanism and active ingredients of GGD for CHD and provides candidate compounds for drug development of CHD.

6.
Medicine (Baltimore) ; 101(47): e31707, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36451388

RESUMO

To explore the risk factors for in-stent restenosis (ISR) after stent implantation in patients with coronary heart disease (CHD) using logistic regression analysis. From February 2020 to February 2022, 350 patients with CHD after percutaneous coronary intervention (PCI) were divided into a stent stenosis group and a stent nonstenosis group based on coronary angiography results performed 2 years after PCI. Univariate and multivariate logistic regressions were used to analyze the factors related to ISR after coronary stent implantation in patients with CHD. This study was approved by the Ethics Committee of Shandong University of Traditional Chinese Medicine. Patient signed informed consent. Of the 350 patients with CHD, 138 (39.43%) had stent restenosis while 212 did not. Univariate analysis showed that a family history of CHD, history of type 2 diabetes, hypertension, smoking, and drinking, discontinuation of aspirin, use of conventional dose statins, calcified lesions, ≥ 3 implanted stents, stent length ≥ 30 mm, stent diameter < 3 mm, and tandem stent increased the risk of restenosis. The incidence of restenosis was higher in the stent group than that in the nonstent group (P < .05). There were no significant differences in the blood lipid level, left ventricular ejection fraction, clopidogrel/ticagrelor or beta-blocker withdrawal, location of culprit vessels, and thrombotic lesions between the 2 groups (P > .05). Multivariate logistic regression analysis showed that family history of CHD, history of type 2 diabetes, hypertension, smoking, and drinking, aspirin withdrawal, use of conventional doses of statins, calcified lesions, ≥ 3 implanted stents, stent length ≥ 30 mm, stent diameter < 3 mm, and tandem stenting were risk factors for ISR within 2 years after PCI. A family history of CHD, history of type 2 diabetes, hypertension, smoking, and drinking, discontinuation of aspirin, use of conventional dose statins, calcified lesions, ≥ 3 stent implantations, stent length ≥ 30 mm, stent diameter < 3 mm, and tandem stenting are risk factors for ISR within 2 years after PCI in patients with CHD.


Assuntos
Doença da Artéria Coronariana , Reestenose Coronária , Diabetes Mellitus Tipo 2 , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipertensão , Intervenção Coronária Percutânea , Humanos , Doença da Artéria Coronariana/cirurgia , Constrição Patológica , Intervenção Coronária Percutânea/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Volume Sistólico , Reestenose Coronária/epidemiologia , Reestenose Coronária/etiologia , Função Ventricular Esquerda , Stents/efeitos adversos , Fatores de Risco , Aspirina/uso terapêutico
7.
Med Sci Monit ; 28: e938511, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36424830

RESUMO

BACKGROUND D-dimer level can reflect the hypercoagulable state of atrial fibrillation (AF) and predict thromboembolic events. However, no effective indicator associated with D-dimer of AF patients has been found to prevent thromboembolic events in AF. This retrospective study from a single center aimed to investigate the correlation between serum albumin and D-dimer levels in 909 patients with non-valvular AF (NVAF) and 653 subjects in sinus rhythm. MATERIAL AND METHODS A total of 909 NVAF patients and 653 sex- and age-matched sinus rhythm participants were used to compare serum albumin and D-dimer levels. Serum albumin was determined by colorimetry, and D-dimer level was determined by latex-enhanced photoimmunoassay. We analyzed the correlation of serum albumin and D-dimer with NVAF by correlation analysis, logistic regression analysis, and receiver operating characteristic (ROC) curve. RESULTS Albumin (P<0.001) and D-dimer (P<0.001) were significantly associated with NVAF. Among NVAF patients, D-dimer level was negatively correlated with albumin levels (P<0.001), and albumin level was an independent risk factor of abnormal D-dimer level (>0.5 ug/mL), which was also an effective predictor of abnormal D-dimer level (the area under the ROC curve was 0.77, P<0.001), and the optimal cutoff value was 36.95 g/L. CONCLUSIONS Serum albumin and D-dimer levels were significantly associated with NVAF. In NVAF patients, D-dimer level was inversely correlated with albumin levels, and albumin level was an independent risk factor and effective predictor of abnormal D-dimer level. Close examination and supplementation of serum albumin can prevent thromboembolic events, but further clinical research and confirmation are needed.


Assuntos
Fibrilação Atrial , Tromboembolia , Humanos , Fibrilação Atrial/complicações , Estudos Retrospectivos , Albumina Sérica , Biomarcadores , Tromboembolia/etiologia
8.
Cardiovasc Diagn Ther ; 12(5): 681-692, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36329965

RESUMO

Background and Objective: Heart failure (HF) is a global public health problem with high morbidity, readmission, and mortality rates. The central mediators of cardiomyocyte survival and death are mitochondria. Mitochondria are a key therapeutic target for HF and are closely involved in the pathophysiological process of HF. A recent study proposes that cuproptosis, a novel cell death mechanism, is closely related to mitochondrial respiration. Therefore, this study aims to explore the link between cuproptosis and HF, and to find novel therapeutic targets and treatments for HF. Methods: A literature search (up to April 2022) was conducted through PubMed database, and the search range was limited to publications in English. After further literature search and screening, we found that we are currently the first study to explore the association between HF and cuproptosis. Key Content and Findings: Research has found that mitochondria are a key therapeutic target in HF and are involved in the pathophysiological processes of energy metabolism, oxidative stress, calcium regulation, and cell death in HF. The micronutrient copper is involved in regulating mitochondrial biological processes, and high serum copper levels are significantly associated with HF. Copper overload affects mitochondrial function and exacerbates the development of HF. And cuproptosis induced by copper overload targeting lipoylated tricarboxylic acid cycle proteins, is closely related to mitochondrial respiration. Copper chelators not only treat HF but also partially rescue copper-mediated cell death. Copper binding to lipoylated components may be the reason for the hyperacetylation of mitochondrial proteins in HF. Ferredoxin 1 (FDX1) may be an upstream regulator of protein lipoylation and is closely related to cuproptosis. Conclusions: This study demonstrates the important roles of mitochondria and micronutrient copper in HF. Cuproptosis may be involved in the pathophysiological process of HF and is responsible for the hyperacetylation of mitochondrial proteins in HF. Cuproptosis has the potential to be a novel therapeutic mechanism for HF, and FDX1 may be a key target for cuproptosis-based treatment of HF. This study provides a new research direction for the treatment of HF and new ideas for the development of new drugs.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36062176

RESUMO

At present, although the early treatment of sepsis is advocated, the treatment effect of sepsis is unsatisfactory, and the mortality rate remains high. Shenfu injection (SFI) has been used to treat sepsis with good clinical efficacy. Based on network pharmacology, this study adopted a new research strategy to identify the potential therapeutic targets and key active ingredients of SFI for sepsis from the perspective of the pathophysiology of sepsis. This analysis identified 28 active ingredients of SFI based on UHPLC-QQQ MS, including 18 ginsenosides and 10 aconite alkaloids. 59 targets were associated with the glycocalyx and sepsis pathways. Based on the number of targets related to the pathophysiological process of sepsis, we identified songorine, ginsenoside Rf, ginsenoside Re, and karacoline as the key active ingredients of SFI for the treatment of sepsis. According to the cluster analysis of MCODE and the validation on the GEO dataset, LGALS3, BCHE, AKT1, and IL2 were identified as the core targets. This study further explored the therapeutic mechanism and the key active ingredients of SFI in sepsis and provided candidate compounds for drug development.

10.
Medicine (Baltimore) ; 101(33): e30102, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984130

RESUMO

BACKGROUND: Heart failure (HF) is the end stage of the development of heart disease, whose prognosis is poor. The previous research of our team indicated that the formulae containing Aconiti Lateralis Radix Praeparata and Lepidii Semen Descurainiae Semen (ALRP-LSDS) could inhibit myocardial hypertrophy, inhibit cardiomyocyte apoptosis, delay myocardial remodeling (REM), and improve the prognosis of patients with HF effectively. In order to explore the mechanism of ALRP-LSDS for the treatment of HF, a combined approach of network pharmacology and molecular docking was conducted. METHODS: Public database TCMSP was used to screen the active compounds of ALRP-LSDS. The targets of screened active compounds were obtained from the TCMSP database and predicted using the online analysis tool PharmMapper. The targets of HF were obtained from 6 databases including GeneCards, OMIM, DrugBank, TTD, PharmGKB, and DisGeNET. Protein-protein interaction and enrichment analysis were performed, respectively, by STRING and Metascape online tools after merging the targets of active compounds and HF. Cytoscape software was used to conduct networks. Finally, molecular docking was performed by Vina to verify the correlation between key targets and active compounds. RESULTS: Final results indicated that the active compounds including ß-sitosterol, isorhamnetin, quercetin, kaempferol, and (R)-norcoclaurine, the targets including AKT1, CASP3, and MAPK1 might be the main active compounds and key targets of ALRP-LSDS for the treatment of HF separately. The binding ability of AKT1 to the main active compounds was better compared with the other 2 key targets, which means it might be more critical. The pathways including AGE-RAGE signaling pathway in diabetic complications, Pathways in cancer, and Fluid shear stress and atherosclerosis might play important roles in the treatment of HF with ALRP-LSDS. In general, ALRP-LSDS could inhibit cardiomyocyte apoptosis, delay REM, and improve cardiac function through multicompound, multitarget, and multipathway, which contributes to the treatment of HF. CONCLUSIONS: Based on the combined approach of network pharmacology and molecular docking, this study screened out the main active compounds, key targets, and main pathways of ALRP-LSDS for the treatment of HF, and revealed its potential mechanisms, providing a theoretical basis for further research.


Assuntos
Aconitum , Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Aconitum/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Sementes
11.
Artigo em Inglês | MEDLINE | ID: mdl-35845584

RESUMO

Shixiao powder comes from the Formularies of the Bureau of People's Welfare Pharmacies in the Song Dynasty and consists of two herbs, Puhuang (PH) and Wulingzhi (WLZ). PH-WLZ is a commonly used drug pair for the treatment of coronary heart disease (CHD), and its clinical effect is remarkable. However, our understanding of the mechanism of treatment of CHD is still unclear. In this study, the method of network pharmacology was used to explore the mechanism of PH-WLZ in the treatment of CHD. A total of 56 active ingredients were identified from PH-WLZ, of which 93 targets of 41 active ingredients overlapped with those of CHD. By performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we obtained the main pathways associated with CHD and those associated with the mechanism of PH-WLZ in the treatment of CHD. By constructing the protein-protein interaction (PPI) network of common targets, 10 hub genes were identified. Based on the number of hub genes contained in the enrichment analysis, we obtained the key pathways of PH-WLZ in the treatment of CHD. The key KEGG pathway in the treatment of CHD by PH-WLZ is mainly enriched in atherosclerosis, inflammation, immunity, oxidative stress, and infection-related pathways. Moreover, the results of molecular docking showed that the active ingredients of PH-WLZ had a good affinity with the hub genes. The results indicate that the mechanism of PH-WLZ in the treatment of CHD may be related to regulation of lipid metabolism, regulation of immune and inflammatory responses, regulation of downstream genes of fluid shear stress, antiaging and oxidative stress, and virus inhibition.

12.
Oxid Med Cell Longev ; 2022: 1733834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035656

RESUMO

Calycosin (CAL) is the main active component present in Astragalus and reportedly possesses diverse pharmacological properties. However, the cardioprotective effect and underlying mechanism of CAL against doxorubicin- (DOX-) induced cardiotoxicity need to be comprehensively examined. Herein, we aimed to investigate whether the cardioprotective effects of CAL are related to its antipyroptotic effect. A cardiatoxicity model was established by stimulating H9c2 cells and C57BL/6J mice using DOX. In vitro, CAL increased H9c2 cell viability and decreased DOX-induced pyroptosis via NLRP3, caspase-1, and gasdermin D signaling pathways in a dose-dependent manner. In vivo, CAL-DOX cotreatment effectively suppressed DOX-induced cytotoxicity as well as inflammatory and cardiomyocyte pyroptosis via the same molecular mechanism. Next, we used nigericin (Nig) and NLRP3 forced overexpression to determine whether CAL imparts antipyroptotic effects by inhibiting the NLRP3 inflammasome in vitro. Furthermore, CAL suppressed DOX-induced mitochondrial oxidative stress injury in H9c2 cells by decreasing the generation of reactive oxygen species and increasing mitochondrial membrane potential and adenosine triphosphate. Likewise, CAL attenuated the DOX-induced increase in malondialdehyde content and decreased superoxide dismutase and glutathione peroxidase activities in H9c2 cells. In vivo, CAL afforded a protective effect against DOX-induced cardiac injury by improving myocardial function, inhibiting brain natriuretic peptide, and improving the changes of the histological morphology of DOX-treated mice. Collectively, our findings confirmed that CAL alleviates DOX-induced cardiotoxicity and pyroptosis by inhibiting NLRP3 inflammasome activation in vivo and in vitro.


Assuntos
Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/efeitos adversos , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamassomos/efeitos dos fármacos , Isoflavonas/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Isoflavonas/farmacologia , Masculino , Camundongos , Piroptose
13.
Artigo em Inglês | MEDLINE | ID: mdl-34824593

RESUMO

Trichosanthes kirilowii Maxim. and Bulbus allii Macrostemi are the components of Gualou Xiebai decoction (GLXB), a commonly used herbal combination for the treatment of coronary heart disease (CHD) in traditional Chinese medicine. Although GLXB is associated with a good clinical effect, its active compounds and mechanism of action remain unclear, which limits its clinical application and the development of novel drugs. In this study, we explored key compounds, targets, and mechanisms of action for GLXB in the treatment of CHD using the network pharmacology approach. We identified 18 compounds and 21 action targets via database screening. Enrichment analysis indicated that the effects of GLXB in patients with CHD are primarily associated with the regulation of signalling pathways for tumour necrosis factor, nuclear factor-kappa B, hypoxia-inducible factor-1, arachidonic acid metabolism, and insulin resistance. GLXB thus exerts anti-inflammatory, antihypoxic, and antiagglutinating effects; regulates lipid metabolism; and combats insulin resistance in CHD via these pathways, respectively. After reverse targeting, we observed that the main active compounds of GLXB in the treatment of CHD were quercetin, naringenin, ß-sitosterol, ethyl linolenate, ethyl linoleate, and prostaglandin B1. To explore the potential of these compounds in the treatment of CHD, we verified the affinity of the compounds and targets via molecular docking analysis. Our study provides a bridge for the transformation of natural herbs and molecular compounds into novel drug therapies for CHD.

14.
Biomed Pharmacother ; 143: 112133, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34474337

RESUMO

MCC950, an NLRP3 inflammasome inhibitor, displays multiple pharmacological properties. However, the protective potential and underlying mechanism of MCC950 against doxorubicin (DOX)-induced myocardial injury has not been well investigated yet. Herein, DOX-induced myocardial injury in mice and in H9c2 myocardial cells was investigated, and the protective effects and underlying mechanism of MCC950 were fully explored. The results showed that MCC950 co-treatment significantly improved myocardial function, inhibited inflammatory and myocardial fibrosis, and attenuated cardiomyocyte pyroptosis in DOX-treated mice. Mechanismly, MCC950 had the potential to inhibit DOX-induced the cleavage of NLRP3, ASC, Caspase-1, IL-18, IL-1ß and GSDMD in vivo. Moreover, MCC950 co-treatment in vivo suppressed DOX-induced cytotoxicity as well as inflammatory and cardiomyocyte pyroptosis through the same molecular mechanism. Taken together, our findings validated that MCC950, an NLRP3 inflammasome inhibitor, has the potential to attenuate doxorubicin-induced myocardial injury in vivo and in vitro by inhibiting NLRP3-mediated pyroptosis.


Assuntos
Anti-Inflamatórios/farmacologia , Furanos/farmacologia , Cardiopatias/prevenção & controle , Indenos/farmacologia , Inflamassomos/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Piroptose/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiotoxicidade , Linhagem Celular , Modelos Animais de Doenças , Doxorrubicina , Fibrose , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
15.
FEBS Open Bio ; 11(11): 2966-2976, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34407320

RESUMO

Myocardial infarction (MI) is caused by the formation of plaques in the arterial walls, leading to a decrease of blood flow to the heart and myocardium injury as a result of hypoxia. Ferroptosis is a crucial event in myocardial injury, and icariin (ICA) exerts protective effects against myocardial injury. Here, we investigated the protective mechanism of ICA in hypoxia/reoxygenation (H/R)-induced ferroptosis of cardiomyocytes. H9C2 cells were subjected to H/R induction. The content of lactate dehydrogenase and the levels of oxidative stress and intracellular ferrous ion Fe2+ were measured. The levels of ferroptosis markers (ACSL4 and GPX4) were detected. H/R-induced H9C2 cells were cultured with ICA in the presence or absence of ferroptosis inducer (erastin). Znpp (an HO-1 inhibitor) was added to ICA-treated H/R cells to verify the role of the Nrf2/HO-1 pathway. H/R-induced H9C2 cells showed reduced viability, enhanced oxidative stress and lactate dehydrogenase content, increased levels of Fe2+ and ACSL4, and decreased levels of GPX4. ICA inhibited H/R-induced ferroptosis and oxidative stress in cardiomyocytes. Erastin treatment reversed the inhibitory effect of ICA on ferroptosis in H/R cells. The expression of Nrf2 and HO-1 in H/R-induced H9C2 cells was reduced, whereas ICA treatment reversed this trend. Inhibition of the Nrf2/HO-1 pathway reversed the protective effect of ICA on H/R-induced ferroptosis. Collectively, our results suggest that ICA attenuates H/R-induced ferroptosis of cardiomyocytes by activating the Nrf2/HO-1 signaling pathway.


Assuntos
Hipóxia Celular/fisiologia , Flavonoides/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ferroptose , Flavonoides/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Artigo em Inglês | MEDLINE | ID: mdl-34285700

RESUMO

Radix Astragali and Semen Lepidii (HQ-TLZ) is a commonly used herbal medicine combination for treatment of heart failure, which has a good clinical effect. However, its active components and mechanism of action are not clear, which limits its clinical application and development. In this study, we explored the mechanism of action of HQ-TLZ in the treatment of heart failure based on network pharmacology. We obtained 11 active ingredients and 109 targets from the TCMSP database and SwissTargetPrediction database. Next, we constructed the action network and carried out enrichment analysis. The results showed that HQ-TLZ treatment of heart failure is primarily achieved by regulating the insulin resistance, erbB signaling pathway, PI3K-Akt signaling pathway, and VEGF signaling pathway. After inverse targeting, molecular docking, and literature search, we determined that the equivalent molecular groups of HQ-TLZ in the treatment of heart failure were quercetin and kaempferol. Based on network pharmacology, we reveal the mechanism of action of HQ-TLZ in the treatment of heart failure to a certain extent. At the same time, we determined the composition of the equivalent molecular group. This provides a bridge for the consistency evaluation of natural herbs and molecular compounds, which is beneficial to the development of novel drugs and further research.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33273955

RESUMO

Fuxin mixture (FXHJ) is a prescription for the treatment of heart failure. It has been shown to be effective in clinical trials, but its active ingredients and mechanism of action are not completely clear, which limits its clinical application and international promotion. In this study, we used network pharmacology to find, conclude, and summarize the mechanism of FXHJ in the treatment of heart failure. From FXHJ, we found 39 active ingredients and 47 action targets. Next, we constructed the action network and was conducted enrichment analysis. The results showed that FXHJ mainly treated heart failure by regulating the MAPK signaling pathway, PI3KAkt signaling pathway, cAMP signaling pathway, TNF signaling pathway, toll-like receptor signaling pathway, VEGF signaling pathway, NF-kappa B signaling pathway, and the apoptotic signaling molecule BCL2. Through the research method of network pharmacology, this study summarized the preliminary experiments of the research group and revealed the probable mechanism of FXHJ in the treatment of heart failure to a certain extent, which provided some ideas for the development of new drugs.

18.
Artigo em Inglês | MEDLINE | ID: mdl-31949473

RESUMO

OBJECTIVE: Heart failure is a major public health problem worldwide nowadays. However, the morbidity, mortality, and awareness of heart failure are not satisfied as well as the status of current treatments. According to the standard treatment for chronic heart failure (CHFST), Fuzi (the seminal root of Aconitum carmichaelii Debx.) formulae are widely used as a complementary treatment for heart failure in clinical practice for a long time. We are aiming to assess the efficacy and safety of Fuzi formulae (FZF) on the treatment of heart failure according to high-quality randomized controlled trials (RCTs). METHODS: RCTs in PubMed, Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database (VIP), and Wanfang Database were searched from their inception until June 2019. In addition, the U.S. National Library of Medicine (clinicaltrials.gov) and the Chinese Clinical Trial Registry (http://www.chictr.org.cn) were also searched. We included RCTs that test the efficacy and safety of FZF for the treatment of heart failure, compared with placebo, CHFST, or placebo plus CHFST. The methodological quality of included studies were evaluated by the Cochrane Collaboration's tool for assessing risk of bias. RCTs with Cochrane risk of bias (RoB) score ≥4 were included in the analysis. The meta-analysis was conducted through RevMan 5.2 software. The GRADE approach was used to assess the quality of the evidence. RESULTS: Twelve RCTs with 1490 participants were identified. The studies investigated the efficacy and safety of FZF, such as FZF plus the CHFST vs placebo plus CHFST (n = 4), FZF plus CHFST vs CHFST (n = 6), FZF plus digoxin tablets (DT) plus CHFST vs placebo plus DT plus CHFST (n = 1), and FZF plus placebo plus CHFST vs placebo plus DT plus CHFST (n = 1). Meta-analysis indicated that FZF have additional benefits based on the CHFST in reducing plasma NT-proBNP level, MLHFQ scores, Lee's heart failure scores (LHFs), and composite cardiac events (CCEs). Meanwhile, it also improved the efficacy on TCM symptoms (TCMs), NYHA functional classification (NYHAfc), 6MWD, and LVEF. Adverse events were reported in 6 out of 12 studies without significant statistical difference. However, after assessing the strength of evidence, it was found that only the quality of evidence for CCEs was high, and the others were either moderate or low or very low. So we could not draw confirmative conclusions on its additional benefits except CCEs. Further clinical trials should be well designed to avoid the issues that were identified in this study. CONCLUSION: The efficacy and additional benefits of FZF for CCEs were certain according to the high-quality evidence assessed through GRADE. However, the efficacy and additional benefits for the other outcomes were uncertain judging from current studies. In addition, the safety assessment has a great room for improvement. Thus, further research studies are needed to find more convincing proofs.

19.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 37(4): 453-457, 2017 04.
Artigo em Chinês | MEDLINE | ID: mdl-30650505

RESUMO

Objective To observe the effect of Fuxin Mixture(FXM) on the ß,-AR(adrenergic receptor) -cAMP(cyclic adenosine monophosphate, cAMP) -PKA ( protein kinase A, PKA) pathway of rats with heart failure. Methods Male Wistar rats were randomly divided into blank control group, captopril group, FXM low dose group, FXM high dose group and model group.Models of CHF were established. After drug intervention for 6 weeks, the left ventricular mass index (LVMI) was analysed, the expression of ß1 - AR mRNA in myocardial tissue was measured,the level of cAMP in rat plasma,the OD value PKA content of spleen tissue homogenate were detected. Results Compared with the blank control group, the LVMI and the cAMP in plasma of model group were increased (P <0. 05), the expression of ß1,-AR mRNA, the OD value of spleen tissue homogenate and PKA were decreased (P <0. 01). Compared with the model group, the LVMI were decreased,and the expression of ß1-AR mRNA were increased in FXM high dose group and captopril group (P <0. 01 , P <0. 05) ; the level of cAMP in plasma of each drug group were decreased (P <0. 01) , the OD value of spleen tissue homogenate and PKA were increased (P <0. 01). Compared with the captopril group, the expression of ß1-AR mRNA, the OD value of spleen tissue homogenate and PKA were decreased, and the LVMI and the cAMP were increased in the FXM low dose group (P <0. 01 , P <0. 05). Compared with the FXM low dose group, the LVMI and the cAMP of FXM high dose group were decreased (P <0. 05), the expression of ß1-AR mRNA, the OD value of spleen tissue homogenate and PKA were increased (P <0. 01). Conclusion FXM could play the role of anti-heart fail- ure through regulating P1-AR-cAMP-PKA pathway.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Animais , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Masculino , Miocárdio , Distribuição Aleatória , Ratos , Ratos Wistar
20.
Clin Res Cardiol ; 104(4): 310-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25391292

RESUMO

Chronic stress is a known risk factor for both endothelial dysfunction and cardiovascular disease (CVD), but less is known of how acute mental stress affects the vasculature. In this systematic review and meta-analysis, we analyzed the impact of acute mental stress on flow-mediated dilation (FMD), an indicator of endothelial function. We searched the Medline, Cochrane, EMBASE, and ISI Web of Knowledge databases through May 2014, to identify publications in English-language journals. The primary outcome was the change in FMD from baseline to the time of measurement. We also assessed the risk of bias and the heterogeneity of included studies. Our search identified eight prospective studies, which displayed significant heterogeneity. Four studies measured FMD while the subject was performing the task; six measured FMD after the task had been completed. The total number of participants was 164. The pooled results indicate that FMD did not change significantly while the task was being performed (pooled difference in means: -0.853; 95 % confidence interval (CI), -3.926/2.220; P = 0.586); however, FMD measured after the task was completed was significantly less than baseline (pooled difference in means: -2.450; 95 %CI, -3.925/-0.975; P = 0.001). In conclusions, our findings provide evidence that an acute stressful experience has a delayed, negative impact on the function of the endothelium. Repeated exposure to short-term stress may lead to permanent injury of the vasculature. Therefore, assessment of patients' exposure to both repeated acute mental stress and chronic stress may be useful in determining their risk of developing CVD.


Assuntos
Estresse Psicológico/epidemiologia , Estresse Psicológico/prevenção & controle , Disfunção Ventricular Esquerda/epidemiologia , Disfunção Ventricular Esquerda/prevenção & controle , Doença Aguda , Adulto , Idoso , Causalidade , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Medição de Risco , Estresse Psicológico/psicologia , Resultado do Tratamento , Disfunção Ventricular Esquerda/psicologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA