Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2315354120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194459

RESUMO

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.


Assuntos
Anticorpos Monoclonais , Imunoglobulina A Secretora , Animais , Camundongos , Humanos , Imunoglobulina G , Imunoglobulina A , Administração Intranasal , Camundongos Transgênicos
2.
Int Arch Allergy Immunol ; 185(1): 84-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37866360

RESUMO

INTRODUCTION: Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin disease characterized by Th2 cell-mediated type 2 inflammation. Emerging evidence indicated that AD patients exhibit an increased incidence of oral disorders. In the present study, we sought mechanistic insights into how AD affects periodontitis. METHODS: Onset of AD was induced by 2,4-dinitrochlorobenzene (DNCB). Furthermore, we induced periodontitis (P) in AD mice. The effect of AD in promoting inflammation and bone resorption in gingiva was evaluated. Hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, immunofluorescence assay, and flow cytometry were used to investigate histomorphology and cytology analysis, respectively. RNA sequencing of oral mucosa is used tissues to further understand the dynamic transcriptome changes. 16S rRNA microbial analysis is used to profile oral microbial composition. RESULTS: Compared to control group, mice in AD group showed inflammatory signatures and infiltration of a proallergic Th2 (Th2A)-like subset in oral mucosa but not periodontitis, as identified by not substantial changes in mucosa swelling, alveolar bone loss, and TRAP+ osteoclasts infiltration. Similarly, more Th2A-like cell infiltration and interleukin-4 levels were significantly elevated in the oral mucosa of DNCB-P mice compared to P mice. More importantly, AD exacerbates periodontitis when periodontitis has occurred and the severity of periodontitis increased with aggravation of dermatitis. Transcriptional analysis revealed that aggravated periodontitis was positively correlated with more macrophage infiltration and abundant CCL3 secreted. AD also altered oral microbiota, indicating the re-organization of extracellular matrix. CONCLUSIONS: These data provide solid evidence about exacerbation of periodontitis caused by type 2 dermatitis, advancing our understanding in cellular and microbial changes during AD-periodontitis progression.


Assuntos
Dermatite Atópica , Periodontite , Humanos , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dinitroclorobenzeno/metabolismo , Dinitroclorobenzeno/farmacologia , Dinitroclorobenzeno/uso terapêutico , RNA Ribossômico 16S , Imunoglobulina E/metabolismo , Anti-Inflamatórios/farmacologia , Pele , Inflamação/metabolismo , Periodontite/complicações , Periodontite/metabolismo , Camundongos Endogâmicos BALB C , Citocinas/metabolismo
3.
J Educ Health Promot ; 12: 376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144018

RESUMO

BACKGROUND: Interprofessional education (IPE) aims to educate healthcare students to improve collaboration and the quality of care. The delivery of IPE through a problem-based learning (PBL) setting appears to hold good validity. However, there are few studies that show the value of combining these two teaching modes. MATERIALS AND METHODS: The research was a longitudinal intervention study. A total of 360 students were randomly divided into three interprofessional PBL (IPBL) groups that mixed nursing, pharmacy, and clinical medical students and three uniprofessional PBL (UPBL) groups that consisted of a single profession. An improved Attitude and Learning Ability Questionnaire (ALAQ) was used to measure the improvement in attitudes toward interprofessional cooperation and learning outcomes. The tutorial session and final examination grades were compared between IPBL and UPBL by Chi-square tests and Cochran-Mantel-Haenszel tests. Cronbach's α analysis was calculated to assess the validity and reliability. Cronbach's alpha coefficient of the questionnaire was 0.887, demonstrating high levels of reliability (95% confidence interval [CI]: 0.842 0.916). RESULTS: According to Chi-square tests and Cochran-Mantel-Haenszel tests, we observed the student's positive attitudes toward interprofessional collaboration and the student's role awareness in the IPBL students was increased compared with UPBL students. In addition, a great majority of IPBL students felt that they had improved their self-learning ability and maintained a high enthusiasm for learning during the course. CONCLUSION: Our study found that the IPBL teaching model was more effective than the UPBL teaching model in healthcare student's positive attitudes toward interprofessional collaboration and learning outcomes.

4.
Adv Healthc Mater ; 12(24): e2300673, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37139567

RESUMO

The viral spike (S) protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) receptors on the host cells, facilitating its entry and infection. Here, functionalized nanofibers targeting the S protein with peptide sequences of IRQFFKK, WVHFYHK and NSGGSVH, which are screened from a high-throughput one-bead one-compound screening strategy, are designed and prepared. The flexible nanofibers support multiple binding sites and efficiently entangle SARS-CoV-2, forming a nanofibrous network that blocks the interaction between the S protein of SARS-CoV-2 and the ACE2 on host cells, and efficiently reduce the invasiveness of SARS-CoV-2. In summary, nanofibers entangling represents a smart nanomedicine for the prevention of SARS-CoV-2.


Assuntos
COVID-19 , Nanofibras , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/química , Ligação Proteica , Peptídeos
6.
Front Pharmacol ; 13: 940628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003511

RESUMO

Coronavirus disease 2019 (COVID-19) was caused by a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 utilizes human angiotensin converting enzyme 2 (hACE2) as the cellular receptor of its spike glycoprotein (SP) to gain entry into cells. Consequently, we focused on the potential of repurposing clinically available drugs to block the binding of SARS-CoV-2 to hACE2 by utilizing a novel artificial-intelligence drug screening approach. Based on the structure of S-RBD and hACE2, the pharmacophore of SARS-CoV-2-receptor-binding-domain (S-RBD) -hACE2 interface was generated and used to screen a library of FDA-approved drugs. A total of 20 drugs were retrieved as S-RBD-hACE2 inhibitors, of which 16 drugs were identified to bind to S-RBD or hACE2. Notably, tannic acid was validated to interfere with the binding of S-RBD to hACE2, thereby inhibited pseudotyped SARS-CoV-2 entry. Experiments involving competitive inhibition revealed that tannic acid competes with S-RBD and hACE2, whereas molecular docking proved that tannic acid interacts with the essential residues of S-RBD and hACE2. Based on the known antiviral activity and our findings, tannic acid might serve as a promising candidate for preventing and treating SARS-CoV-2 infection.

7.
Nat Commun ; 13(1): 2670, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562366

RESUMO

The recent emergence of the Omicron variant has raised concerns on vaccine efficacy and the urgent need to study more efficient vaccination strategies. Here we observed that an mRNA vaccine booster in individuals vaccinated with two doses of inactivated vaccine significantly increased the plasma level of specific antibodies that bind to the receptor-binding domain (RBD) or the spike (S) ectodomain (S1 + S2) of both the G614 and the Omicron variants, compared to two doses of homologous inactivated vaccine. The level of RBD- and S-specific IgG antibodies and virus neutralization titers against variants of concern in the heterologous vaccination group were similar to that in individuals receiving three doses of homologous mRNA-vaccine or a boost of mRNA vaccine after infection, but markedly higher than that in individuals receiving three doses of a homologous inactivated vaccine. This heterologous vaccination regime furthermore significantly enhanced the RBD-specific memory B cell response and S1-specific T cell response, compared to two or three doses of homologous inactivated vaccine. Our study demonstrates that mRNA vaccine booster in individuals vaccinated with inactivated vaccines can be highly beneficial, as it markedly increases the humoral and cellular immune responses against the virus, including the Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , RNA Mensageiro/genética , SARS-CoV-2/genética , Vacinação , Vacinas de Produtos Inativados , Vacinas Sintéticas , Vacinas de mRNA
8.
iScience ; 25(2): 103743, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35018336

RESUMO

Information concerning the longevity of immunity to SARS-CoV-2 following natural infection may have considerable implications for durability of immunity induced by vaccines. Here, we monitored the SARS-CoV-2 specific immune response in COVID-19 patients followed up to 15 months after symptoms onset. Following a peak at day 15-28 postinfection, the IgG antibody response and plasma neutralizing titers gradually decreased over time but stabilized after 6 months. Compared to G614, plasma neutralizing titers were more than 8-fold lower against variants Beta, Gamma, and Delta. SARS-CoV-2-specific memory B and T cells persisted in the majority of patients up to 15 months although a significant decrease in specific T cells, but not B cells, was observed between 6 and 15 months. Antiviral specific immunity, especially memory B cells in COVID-19 convalescent patients, is long-lasting, but some variants of concern may at least partially escape the neutralizing activity of plasma antibodies.

9.
Med ; 2(3): 281-295.e4, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33589885

RESUMO

BACKGROUND: Monitoring the adaptive immune responses during the natural course of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection provides useful information for the development of vaccination strategies against this virus and its emerging variants. We thus profiled the serum anti-SARS-CoV-2 antibody (Ab) levels and specific memory B and T cell responses in convalescent coronavirus disease 2019 (COVID-19) patients. METHODS: A total of 119 samples from 88 convalescent donors who experienced mild to critical disease were tested for the presence of elevated anti-spike and anti-receptor binding domain Ab levels over a period of 8 months. In addition, the levels of SARS-CoV-2 neutralizing Abs and specific memory B and T cell responses were tested in a subset of samples. FINDINGS: Anti-SARS-CoV-2 Abs were present in 85% of the samples collected within 4 weeks after the onset of symptoms in COVID-19 patients. Levels of specific immunoglobulin M (IgM)/IgA Abs declined after 1 month, while levels of specific IgG Abs and plasma neutralizing activities remained relatively stable up to 6 months after diagnosis. Anti-SARS-CoV-2 IgG Abs were still present, although at a significantly lower level, in 80% of the samples collected at 6-8 months after symptom onset. SARS-CoV-2-specific memory B and T cell responses developed with time and were persistent in all of the patients followed up for 6-8 months. CONCLUSIONS: Our data suggest that protective adaptive immunity following natural infection of SARS-CoV-2 may persist for at least 6-8 months, regardless of disease severity. Development of medium- or long-term protective immunity through vaccination may thus be possible. FUNDING: This project was supported by the European Union's Horizon 2020 research and innovation programme (ATAC, no. 101003650), the Italian Ministry of Health (Ricerca Finalizzata grant no. GR-2013-02358399), the Center for Innovative Medicine, and the Swedish Research Council. J.A. was supported by the SciLifeLab/KAW national COVID-19 research program project grant 2020.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Imunoglobulina A , Imunoglobulina G , Linfócitos T
10.
J Interferon Cytokine Res ; 35(9): 720-33, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25946230

RESUMO

Cytokines mediate the interaction of immune cells. Discovery of novel potential cytokines is of great value for both basic research and clinical application. In this study, we identified a novel immune-related molecule, transmembrane protein 98 (TMEM98), through a high-throughput screening platform for novel potential cytokines at a genome-wide level using the strategy of immunogenomics. So far, there is no characteristic and immune-related functional report about it. In this study, we demonstrate that TMEM98 exists as a type II transmembrane protein both in the ectopically and endogenously expressed systems. Interestingly, TMEM98 could also be secreted through exosomes. Moreover, the native secreted form of TMEM98 could be detected in the supernatants of activated human peripheral blood mononuclear cells and mouse CD4(+) T cells. Further expression profile analysis showed TMEM98 was upregulated during the activation and differentiation of T helper (Th) 1 cells. Function analysis showed that eukaryotic recombinant TMEM98 (rTMEM98) promoted the differentiation of Th1 cells under both antigen-nonspecific and antigen-specific Th1-skewing conditions. These findings were further confirmed in vivo as prokaryotic rTMEM98 administration significantly increased antigen-specific IFN-γ production and serum antigen-specific IgG2a in the methylated bovine serum albumin-induced delayed-type hypersensitivity model. Overall, these observations emphasize the characteristics and essential roles of TMEM98 for the first time and will be helpful in further understanding the development of Th1 cells.


Assuntos
Diferenciação Celular/imunologia , Proteínas de Membrana/imunologia , Células Th1/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Citocinas/imunologia , Feminino , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/imunologia
11.
FASEB J ; 16(7): 727-9, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11923224

RESUMO

The homeostatic regulation that controls total thymocyte and peripheral T-cell numbers is not clearly understood. We describe here a direct hormonal influence of endogenous levels of glucocorticoids (GCs) on thymocyte and peripheral T-cell homeostasis independent of indirect systemic effects of GCs. The results were obtained by generating transgenic mice with an altered GC sensitivity targeted to thymocytes and peripheral T cells by increasing or decreasing glucocorticoid receptor (GR) expression specifically in thymocytes and peripheral T cells. A twofold increase in GC sensitivity resulted in a major decrease in thymocyte number, affecting all subpopulations, although single-positive CD8+ cells were less influenced. In the thymus, this was due to increased apoptosis in the organ, whereas proliferation of thymocyte populations was unaffected. In the periphery, a pronounced reduction in T-cell number was seen, demonstrating an effect of endogenous GCs also on T-cell homeostasis. The effects were confirmed in transgenic mice with reduced GR expression, which showed increased thymocyte and T-cell numbers. Thus, our data demonstrate that physiological GC levels are directly involved in controlling the size of both thymocyte and T-cell pools.


Assuntos
Glucocorticoides/fisiologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Apoptose , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem da Célula , Homeostase , Contagem de Linfócitos , Camundongos , Camundongos Transgênicos , Modelos Imunológicos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Baço/imunologia , Timo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA