Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(20): 5229-5232, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831834

RESUMO

A near-infrared (NIR) laser heterodyne radiometer (LHR) using a 1603 nm distributed feedback (DFB) laser, associated with an erbium-doped fiber amplifier (EDFA), used as a local oscillator (LO) was developed. The EDFA was customized for automatic power control to amplify and stabilize the LO DFB laser power, which allowed to reduce baseline fluctuation and thus make the processed atmospheric transmission spectrum with higher precision. The operation of the EDFA-assisted LHR with a shot-noise-dominated performance was analyzed and experimentally achieved by optimizing the LO power. The performance of the developed LHR was evaluated and verified by measuring an atmospheric CO2 absorption spectrum, and the atmospheric CO2 column abundances were then retrieved based on the optimal estimation method (OEM). The results were in good agreement with the Greenhouse Gas Observation Satellite (GOSAT) data. The EDFA-assisted LHR firstly reported in this Letter has a potential to further improve the measurement precision of atmospheric greenhouse gases using ground-based LHR remote sensing.

2.
Opt Express ; 31(5): 7850-7862, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859908

RESUMO

We developed a near-infrared (NIR) dual-channel oxygen-corrected laser heterodyne radiometer (LHR) in the ground-based solar occultation mode for measuring vertical profile of wind field in the troposphere and low stratosphere. Two distributed feedback (DFB) lasers centered at 1.27 µm and 1.603 µm were used as local oscillators (LO) to probe absorption of oxygen (O2) and carbon dioxide (CO2), respectively. High-resolution atmospheric O2 and CO2 transmission spectra were measured simultaneously. The atmospheric O2 transmission spectrum was used to correct the temperature and pressure profiles based on a constrained Nelder-Mead's simplex method. Vertical profiles of atmospheric wind field with an accuracy of ∼5 m/s were retrieved based on the optimal estimation method (OEM). The results reveal that the dual-channel oxygen-corrected LHR has high development potential in portable and miniaturized wind field measurement.

3.
Sensors (Basel) ; 23(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36679777

RESUMO

A fully transportable laser heterodyne radiometer (LHR), involving a flexible polycrystalline mid-infrared (PIR) fiber-coupling system and operating around 8 µm, was characterized and optimized with the help of a calibrated high temperature blackbody source to simulate solar radiation. Compared to a mid-IR free-space sunlight coupling system, usually used in a current LHR, such a fiber-coupling system configuration makes the mid-infrared (MIR) LHR fully transportable. The noise sources, heterodyne signal, and SNR of the MIR LHR were analyzed, and the optimum operating local oscillator (LO) photocurrent was experimentally obtained. The spectroscopic performance of the MIR LHR was finally evaluated. This work demonstrated that the developed fully transportable MIR LHR could be used for ground-based atmospheric sounding measurements of multiple trace gases in the atmospheric column. In addition, it also has high potential for applications on spacecraft or on an airborne platform.


Assuntos
Lasers , Radiometria , Análise Espectral/métodos , Gases , Luz
4.
Opt Express ; 30(18): 31828-31839, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242257

RESUMO

The performance of a micro-electro-mechanical system (MEMS) modulator-based dual-channel mid-infrared laser heterodyne radiometer (MIR-LHR) was demonstrated in ground-based solar occultation mode for the first time. A MEMS mirror was employed as an alternative modulator to the traditional mechanical chopper, which makes the system more stable and compact. Two inter-band cascade lasers (ICL) centered at 3.53 µm and 3.93 µm, were employed as local oscillators (LO) to probe absorption lines of methane (CH4), water vapor (H2O) and nitrous oxide (N2O). The system stability greater than 1000 s was evaluated by Allan variance. The experimental MIR-LHR spectra (acquired at Hefei, China, on February 24th 2022) of two channels were compared and were in good agreement with simulation spectra from atmospheric transmission modeling. The mixing ratio of CH4, H2O and N2O were determined to be ∼1.906 ppm, 3069 ppm and ∼338 ppb, respectively. The reported MEMS modulator-based dual-channel MIR-LHR in this manuscript has great potential to be a portable and high spectral resolution instrument for remote sensing of multi-component gases in the atmospheric column.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA