RESUMO
KEY MESSAGE: SMC5/6 complex subunit OsMMS21 is involved in cell cycle and hormone signaling and required for stem cell proliferation during shoot and root development in rice. The structural maintenance of chromosome (SMC)5/6 complex is required for nucleolar integrity and DNA metabolism. Moreover, METHYL METHANESULFONATE SENSITIVITY GENE 21 (MMS21), a SUMO E3 ligase that is part of the SMC5/6 complex, is essential for the root stem cell niche and cell cycle transition in Arabidopsis. However, its specific role in rice remains unclear. Here, OsSMC5 and OsSMC6 single heterozygous mutants were generated using CRISPR/Cas9 technology to elucidate the function of SMC5/6 subunits, including OsSMC5, OsSMC6, and OsMMS21, in cell proliferation in rice. ossmc5/ + and ossmc6/ + heterozygous single mutants did not yield homozygous mutants in their progeny, indicating that OsSMC5 and OsSMC6 both play necessary roles during embryo formation. Loss of OsMMS21 caused severe defects in both the shoot and roots in rice. Transcriptome analysis showed a significant decrease in the expression of genes involved in auxin signaling in the roots of osmms21 mutants. Moreover, the expression levels of the cycB2-1 and MCM genes, which are involved the cell cycle, were significantly lower in the shoots of the mutants, indicating that OsMMS21 was involved in both hormone signaling pathways and the cell cycle. Overall, these findings indicate that the SUMO E3 ligase OsMMS21 is required for both shoot and root stem cell niches, improving the understanding of the function of the SMC5/6 complex in rice.
Assuntos
Oryza , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Ubiquitina-Proteína Ligases/genética , Divisão Celular , HormôniosRESUMO
In conventional parameters design, the driving circuit is usually simplified as an RLC second-order circuit, and the switching characteristics are optimized by selecting parameters, but the influence of switching characteristics on the driving circuit is not considered. In this paper, the insight mechanism for the gate-source voltage changed by overshoot and ringing caused by the high switching speed of SiC MOSFET is highlighted, and we propose an optimized design method to obtain optimal parameters of the SiC MOSFET driving circuit with consideration of parasitic parameters. Based on the double-pulse circuit, we evaluated the influence of main parameters on the gate-source voltage, including driving voltage, driving resistance, gate parasitic inductance, and stray inductance of the power circuit. A SiC-based boost PFC is constructed and tested. The test results show that the switching loss can be reduced by 7.282 W by using the proposed parameter optimization method, and the over-voltage stress of SiC MOSFET is avoided.
RESUMO
At the transition from vegetative to reproductive growth in rice (Oryza sativa), a developmental program change occurs, resulting in panicle (rice inflorescence) formation. The initial event of the transition is the change of the shoot apical meristem to an inflorescence meristem (IM), accompanied by a rapid increase in the meristem size. Suppression of leaf growth also occurs, resulting in the formation of bracts. The IM generates branch meristems (BMs), indeterminate meristems that reiteratively generate next-order meristems. All meristems eventually acquire a determinate spikelet meristem identity and terminate after producing a floret. ABERRANT PANICLE ORGANIZATION2 (APO2) is the rice ortholog of Arabidopsis (Arabidopsis thaliana) LEAFY (LFY), a plant-specific transcription factor (TF). APO2 is a positive regulator of panicle branch formation. Here, we show that APO2 is also required to increase the meristem size of the IM and suppress bract outgrowth. We identified genes directly and indirectly regulated by APO2 and identified APO2-binding sites. These analyses showed that APO2 directly controls known regulators of panicle development, including SQUAMOSA PROMOTER BINDING PROTEIN LIKE14 and NECK LEAF1. Furthermore, we revealed that a set of genes act as downstream regulators of APO2 in controlling meristem cell proliferation during reproductive transition, bract suppression, and panicle branch formation. Our findings indicate that APO2 acts as a master regulator of rice panicle development by regulating multiple steps in the reproductive transition through directly controlling a set of genes.
Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Inflorescência/metabolismo , Meristema/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismoRESUMO
KEY MESSAGE: Chromatin remodeling ATPases OsSYD and OsBRM are involved in shoot establishment, and both affect OSH gene transcription. OsSYD protein interacts with RFL, but OsBRM does not. In plants, SPLAYED (SYD) and BRAHMA (BRM) encode chromatin remodeling ATPases that use the energy derived from ATP hydrolysis to restructure nucleosomes and render certain genomic regions available to transcription factors. However, the function of SYD and BRM on rice growth and development is unknown. Here, we constructed ossyd and osbrm mutants using CRISPR/Cas9 technology and analyzed the effects of mutations on rice embryo development. We discovered that the ossyd and osbrm mutants exhibited severe defects during embryonic development, whereas endosperm development was normal. These results indicated that the development of the embryo and endosperm is independent of each other. Consequently, the ossyd- and osbrm-null mutants did not germinate due to the abnormal embryos. Furthermore, we observed the embryos of ossyd- and osbrm-null mutants, and they indeed had distinct differentiation defects in shoot establishment, acquired during embryogenesis. To verify the function of OsSYD and OsBRM in embryogenesis, we measured the transcript levels of marker genes at different stages. Compared with wild type, the expression levels of multiple OSH genes were significantly reduced in the mutants, which was consistent with the defective shoot establishment phenotypes. The interaction between SYD and RICE FLORICAULA/LFY (RFL) was revealed using a yeast two-hybrid screening system, suggesting that the interaction between the LFY homolog and chromatin remodeling ATPases is ubiquitous in plants. Collectively, our findings provide the basis for elucidating the function of OsSYD and OsBRM during embryo development in rice.
Assuntos
Adenosina Trifosfatases/metabolismo , Oryza , Adenosina Trifosfatases/química , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Desenvolvimento Embrionário , Oryza/metabolismoRESUMO
The CUP-SHAPED COTYLEDON (CUC) genes (CUC1, CUC2 and CUC3) regulate organ boundary formation in Arabidopsis. However, the functions of their homologous genes in rice (Oryza sativa) are still unknown. Here, we have identified an orthologous gene of CUC1 and CUC2 in rice, named OsNAM. Subcellular localization and yeast two-hybrid assay results have suggested that OsNAM encodes a conserved nuclear NAC (NAM/ATAF1/CUC2) protein with a transcriptional activator. The null mutant osnam-1 presented a fused leaf structure, small panicles, reduced branches and aberrant floral organ identities when compared with those of the wild type. Beta-glucuronidase staining and GFP reporter lines indicated that OsNAM was expressed in young tissues and that its boundary enrichment expression was regulated by OsmiR164. Loss-of-function mutants for OsCUC3 resulted in no obvious defects throughout rice development. The osnam oscuc3 double mutant, however, resulted in severe leaf fusion of the first two leaves, while the osnam single mutant showed a similar phenotype from the seventh leaf. These results indicated that OsNAM and OsCUC3 act redundantly for boundary specification during post-embryonic development. Overall, we describe the biological functions of OsNAM and OsCUC3 in rice development and the expression characteristics of OsNAM. This work reveals the important role of CUC genes in rice.
Assuntos
Arabidopsis/fisiologia , Oryza/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/genética , Meristema/metabolismo , Meristema/fisiologia , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The significant advance of power electronics in today's market is calling for high-performance power conversion systems and MEMS devices that can operate reliably in harsh environments, such as high working temperature. Silicon-carbide (SiC) power electronic devices are featured by the high junction temperature, low power losses, and excellent thermal stability, and thus are attractive to converters and MEMS devices applied in a high-temperature environment. This paper conducts an overview of high-temperature power electronics, with a focus on high-temperature converters and MEMS devices. The critical components, namely SiC power devices and modules, gate drives, and passive components, are introduced and comparatively analyzed regarding composition material, physical structure, and packaging technology. Then, the research and development directions of SiC-based high-temperature converters in the fields of motor drives, rectifier units, DC-DC converters are discussed, as well as MEMS devices. Finally, the existing technical challenges facing high-temperature power electronics are identified, including gate drives, current measurement, parameters matching between each component, and packaging technology.