Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genet Mol Biol ; 46(3 Suppl 1): e20230140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252060

RESUMO

Aquatic mammals (marine and freshwater species) share significant and similar adaptations, enabling them to tolerate hypoxia during regular breath-hold diving. Despite the established importance of HIF1A, a master regulator in the molecular mechanism of hypoxia response, and other associated genes, their role in the evolutionary adaptation of aquatic mammals is not fully understood. In this study, we investigated this topic by employing a candidate gene approach to analyze 11 critical genes involved in the HIF1A signaling pathway in aquatic mammals. Our gene analyses included evaluating positive and negative selection, relaxation or constriction of selection, and molecular convergence compared to other terrestrial mammals, including subterranean mammals. Evidence of selection suggested a significant role of negative selection, as well as relaxation of the selective regime in cetaceans for most of these genes. We found that the glutamine 68 variant in the HIF3α protein is unique to cetaceans and initial evaluations indicated a destabilizing effect on protein structure. However, further analyses are necessary to evaluate its functional impact and adaptive relevance in this taxon.

2.
Genet Mol Biol ; 45(1): e20210309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35266951

RESUMO

Our goal was to describe in more detail the evolutionary history of Gamma and two derived lineages (P.1.1 and P.1.2), which are part of the arms race that SARS-CoV-2 wages with its host. A total of 4,977 sequences of the Gamma strain of SARS-CoV-2 from Brazil were analyzed. We detected 194 sites under positive selection in 12 genes/ORFs: Spike, N, M, E, ORF1a, ORF1b, ORF3, ORF6, ORF7a, ORF7b, ORF8, and ORF10. Some diagnostic sites for Gamma lacked a signature of positive selection in our study, but these were not fixed, apparently escaping the action of purifying selection. Our network analyses revealed branches leading to expanding haplotypes with sites under selection only detected when P.1.1 and P.1.2 were considered. The P.1.2 exclusive haplotype H_5 originated from a non-synonymous mutational step (H3509Y) in H_1 of ORF1a. The selected allele, 3509Y, represents an adaptive novelty involving ORF1a of P.1. Finally, we discuss how phenomena such as epistasis and antagonistic pleiotropy could limit the emergence of new alleles (and combinations thereof) in SARS-COV-2 lineages, maintaining infectivity in humans, while providing rapid response capabilities to face the arms race triggered by host immuneresponses.

3.
Infect Genet Evol ; 95: 105030, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34384937

RESUMO

STAT2 plays a strategic role in defending viral infection through the signaling cascade involving the immune system initiated after type I interferon release. Many flaviviruses target the inactivation or degradation of STAT2 as a strategy to impair this host's line of defense. Primates are natural reservoirs for a range of disease-causing flaviviruses (e.g., Zika, Dengue, and Yellow Fever virus), while rodents appear less susceptible. We analyzed the STAT2 coding sequence of 28 Rodentia species and 49 Primates species. Original data from 19 Platyrrhini species were sequenced for the SH2 domain of STAT2 and included in the analysis. STAT2 has many sites whose variation can be explained by positive selection, measurement by two methods (PALM indicated 12, MEME 61). Both evolutionary tests significantly marked sites 127, 731, 739, 766, and 780. SH2 is under evolutionary constraint but presents episodic positive selection events within Rodentia: in one of them, a moderately radical change (serine > arginine) at position 638 is found in Peromyscus species, and can be implicated in the difference in susceptibility to flaviviruses within Rodentia. Some other positively selected sites are functional such as 5, 95, 203, 251, 782, and 829. Sites 251 and 287 regulate the signaling mediated by the JAK-STAT2 pathway, while 782 and 829 create a stable tertiary structure of STAT2, facilitating its connection with transcriptional co-activators. Only three positively selected sites, 5, 95, and 203, are recognized members who act on the interface between STAT2 and flaviviruses NS5 protein. We suggested that due to the higher evolutionary rate, rodents are, at this moment, taking some advantage in the battle against infections for some well-known Flaviviridae, in particular when compared to primates. Our results point to dynamics that fit with a molecular evolutionary scenario shaped by a thought-provoking virus-host arms race.


Assuntos
Antivirais , Evolução Molecular , Primatas/genética , Roedores/genética , Fator de Transcrição STAT2/genética , Animais , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA