Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 29(8): 2175-2183.e4, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747592

RESUMO

All viruses balance interactions between cellular machinery co-opted to support replication and host factors deployed to halt the infection. We use gene correlation analysis to perform an unbiased screen for host factors involved in influenza A virus (FLUAV) infection. Our screen identifies the cellular factor epidermal growth factor receptor pathway substrate 8 (EPS8) as the highest confidence pro-viral candidate. Knockout and overexpression of EPS8 confirm its importance in enhancing FLUAV infection and titers. Loss of EPS8 does not affect virion attachment, uptake, or fusion. Rather, our data show that EPS8 specifically functions during virion uncoating. EPS8 physically associates with incoming virion components, and subsequent nuclear import of released ribonucleoprotein complexes is significantly delayed in the absence of EPS8. Our study identifies EPS8 as a host factor important for uncoating, a crucial step of FLUAV infection during which the interface between the virus and host is still being discovered.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus da Influenza A/patogenicidade , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Vírion/genética , Vírion/metabolismo
2.
PLoS One ; 14(8): e0221407, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31454374

RESUMO

Antibody titers against a viral pathogen are typically measured using an antigen binding assay, such as an enzyme-linked immunosorbent assay (ELISA), which only measures the ability of antibodies to identify a viral antigen of interest. Neutralization assays measure the presence of virus-neutralizing antibodies in a sample. Traditional neutralization assays, such as the plaque reduction neutralization test (PRNT), are often difficult to use on a large scale due to being both labor and resource intensive. Here we describe an Ebola virus fluorescence reduction neutralization assay (FRNA), which tests for neutralizing antibodies, that requires only a small volume of sample in a 96-well format and is easy to automate. The readout of the FRNA is the percentage of Ebola virus-infected cells measured with an optical reader or overall chemiluminescence that can be generated by multiple reading platforms. Using blinded human clinical samples (EVD survivors or contacts) obtained in Liberia during the 2013-2016 Ebola virus disease outbreak, we demonstrate there was a high degree of agreement between the FRNA-measured antibody titers and the Filovirus Animal Non-clinical Group (FANG) ELISA titers with the FRNA providing information on the neutralizing capabilities of the antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Animais , Anticorpos Bloqueadores/imunologia , Chlorocebus aethiops , Surtos de Doenças , Ebolavirus/patogenicidade , Ensaio de Imunoadsorção Enzimática , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Humanos , Libéria , Testes de Neutralização/métodos , Células Vero
3.
Front Microbiol ; 10: 856, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105663

RESUMO

In 2012, the genome of a novel rhabdovirus, Bas-Congo virus (BASV), was discovered in the acute-phase serum of a Congolese patient with presumed viral hemorrhagic fever. In the absence of a replicating virus isolate, fulfilling Koch's postulates to determine whether BASV is indeed a human virus and/or pathogen has been impossible. However, experiments with vesiculoviral particles pseudotyped with Bas-Congo glycoprotein suggested that BASV particles can enter cells from multiple animals, including humans. In 2015, genomes of two related viruses, Ekpoma virus 1 (EKV-1) and Ekpoma virus 2 (EKV-2), were detected in human sera in Nigeria. Isolates could not be obtained. Phylogenetic analyses led to the classification of BASV, EKV-1, and EKV-2 in the same genus, Tibrovirus, together with five biting midge-borne rhabdoviruses [i.e., Beatrice Hill virus (BHV), Bivens Arm virus (BAV), Coastal Plains virus (CPV), Sweetwater Branch virus (SWBV), and Tibrogargan virus (TIBV)] not known to infect humans. Using individual recombinant vesiculoviruses expressing the glycoproteins of all eight known tibroviruses and more than 75 cell lines representing different animal species, we demonstrate that the glycoproteins of all tibroviruses can mediate vesiculovirus particle entry into human, bat, nonhuman primate, cotton rat, boa constrictor, and Asian tiger mosquito cells. Using four of five isolated authentic tibroviruses (i.e., BAV, CPV, SWBV, and TIBV), our experiments indicate that many cell types may be partially resistant to tibrovirus replication after virion cell entry. Consequently, experimental data solely obtained from experiments using tibrovirus surrogate systems (e.g., vesiculoviral pseudotypes, recombinant vesiculoviruses) cannot be used to predict whether BASV, or any other tibrovirus, infects humans.

4.
J Virol ; 88(21): 12572-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142579

RESUMO

UNLABELLED: The recent identification of highly divergent influenza A viruses in bats revealed a new, geographically dispersed viral reservoir. To investigate the molecular mechanisms of host-restricted viral tropism and the potential for transmission of viruses between humans and bats, we exposed a panel of cell lines from bats of diverse species to a prototypical human-origin influenza A virus. All of the tested bat cell lines were susceptible to influenza A virus infection. Experimental evolution of human and avian-like viruses in bat cells resulted in efficient replication and created highly cytopathic variants. Deep sequencing of adapted human influenza A virus revealed a mutation in the PA polymerase subunit not previously described, M285K. Recombinant virus with the PA M285K mutation completely phenocopied the adapted virus. Adaptation of an avian virus-like virus resulted in the canonical PB2 E627K mutation that is required for efficient replication in other mammals. None of the adaptive mutations occurred in the gene for viral hemagglutinin, a gene that frequently acquires changes to recognize host-specific variations in sialic acid receptors. We showed that human influenza A virus uses canonical sialic acid receptors to infect bat cells, even though bat influenza A viruses do not appear to use these receptors for virus entry. Our results demonstrate that bats are unique hosts that select for both a novel mutation and a well-known adaptive mutation in the viral polymerase to support replication. IMPORTANCE: Bats constitute well-known reservoirs for viruses that may be transferred into human populations, sometimes with fatal consequences. Influenza A viruses have recently been identified in bats, dramatically expanding the known host range of this virus. Here we investigated the replication of human influenza A virus in bat cell lines and the barriers that the virus faces in this new host. Human influenza A and B viruses infected cells from geographically and evolutionarily diverse New and Old World bats. Viruses mutated during infections in bat cells, resulting in increased replication and cytopathic effects. These mutations were mapped to the viral polymerase and shown to be solely responsible for adaptation to bat cells. Our data suggest that replication of human influenza A viruses in a nonnative host drives the evolution of new variants and may be an important source of genetic diversity.


Assuntos
Adaptação Biológica , Vírus da Influenza A/enzimologia , Vírus da Influenza A/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Quirópteros , Efeito Citopatogênico Viral , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A/fisiologia , Mutação de Sentido Incorreto , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA