Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6680): 289-293, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236963

RESUMO

To harness the potential of a quantum computer, quantum information must be protected against error by encoding it into a logical state that is suitable for quantum error correction. The Gottesman-Kitaev-Preskill (GKP) qubit is a promising candidate because the required multiqubit operations are readily available at optical frequency. To date, however, GKP qubits have been demonstrated only at mechanical and microwave frequencies. We realized a GKP state in propagating light at telecommunication wavelength and verified it through homodyne measurements without loss corrections. The generation is based on interference of cat states, followed by homodyne measurements. Our final states exhibit nonclassicality and non-Gaussianity, including the trident shape of faint instances of GKP states. Improvements toward brighter, multipeaked GKP qubits will be the basis for quantum computation with light.

2.
Phys Rev Lett ; 131(23): 230801, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134775

RESUMO

Uncertainty principle prohibits the precise measurement of both components of displacement parameters in phase space. We have theoretically shown that this limit can be beaten using single-photon states, in a single-shot and single-mode setting [F. Hanamura et al., Estimation of gaussian random displacement using non-gaussian states, Phys. Rev. A 104, 062601 (2021).PLRAAN2469-992610.1103/PhysRevA.104.062601]. In this Letter, we validate this by experimentally beating the classical limit. In optics, this is the first experiment to estimate both parameters of displacement using non-Gaussian states. This result is related to many important applications, such as quantum error correction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA