Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36428353

RESUMO

Physical pellet quality and AMEN concentration are strongly related to each other in broiler feeding. A study was conducted to evaluate the relationship between dietary AMEN concentration and feed processing on pellet quality, nutrient digestibility, broiler performance, serum markers, and yield of commercial cuts. Six diets were formulated. The first diet had the recommended AMEN concentration, each further diet was calculated with 40 kcal/kg less, from 0 to −200 kcal/kg, resulting in six levels for each feed phase: starter (1−14 d), grower (15−28 d), and finisher (29−35 d). These diets were processed with and without expander conditioning prior to pelleting, using an average corn particle size of 1.6 mm, ground with a roller mill. A total of 1008 one-day-old male Ross 308 broiler chickens were placed in a 6 × 2 (6 energy levels and 2 conditionings) factorial trial with six boxes as replications, with three in each broiler performance trial period. Excreta were collected 2 days before the end of each feed phase for apparent total tract digestibility measurement. On day 36, four broilers from each replication (pen) were weighed and then euthanized for blood collection, following which the gastrointestinal organs were weighed, and the ileal and gizzard contents were collected. On day 37, all remaining broilers were slaughtered after fasting to measure commercial cuts and abdominal fat. The results show that the pellet durability index (PDI) was most affected by energy reducing and expander conditioning prior to pelleting, and it was better when diets had energy reduced by 40 to 200 kcal/kg (p > 0.001), as when expander conditioning was used. Digestibility of nutrients was slightly affected by treatments, as was the broiler performance; however, feed efficiency was improved in broiler-fed diets without AMEN reduction and when an expander was used, with p = 0.050 and p = 0.031, respectively. No effects were observed on the weight of gastrointestinal tract organs and serum markers, except for liver (p = 0.037) and α-amylase (p = 0.047). The lowest liver weight and lowest serum protein, cholesterol, triglyceride, gamma-glutamyl, and lipase concentrations were obtained when diets were formulated without energy reduction (Ross-0). There was no effect on commercial cuts relative to live weight at slaughter. The energy reduction was well reflected in the proportion of abdominal fat, which decreased when AMEN was reduced (p = 0.001). The present study shows it is possible to use diets with up to 200 kcal/kg reduction in AMEN without losses in performance, and the use of expander conditioning prior to pelleting promotes higher pellet quality and broiler feed efficiency.

2.
Animals (Basel) ; 12(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36230448

RESUMO

During the processing of compound feed for broilers, several changes occur that affect the physical and probably the nutritional properties of pellets, influencing animal performance. The effects of mill type, particle size (PS) and expander conditioning prior to pelleting (E + P) were combined to generate pellets. A 2 × 3 × 2 factorial arrangement was designed with two mill types (a hammer mill (HM) or roller mill (RM)), three PSs (0.8, 1.2 or 1.6 mm) and two E + Ps (with or without expander processing prior to pelleting), with six replications of 12 unsexed Ross 308 broilers each. All the processing lines reduced the PS from mash to finished pellets via secondary grinding, by 2.35 times on average. However, RM grinding required less electric power (p < 0.001). The intended PS (0.8, 1.2 or 1.6 mm) did not affect this energy consumption. E + P and the PS interacted for the pellet durability index (PDI) (p = 0.006). The worst PDI in the pellets was observed when a PS of 1.6 mm without E + P was used. Only E + P positively affected starch (p < 0.001) and amino acids' ileal apparent digestibility (p < 0.01). Organic matter (OM) (p = 0.02) and fat (p < 0.001) digestibility, as well as AMEN (p = 0.005) content, were influenced by the PS (main effect), whereas E + P and mill type interacted with these values (p < 0.005). Lower OM digestibility and AMEN content were observed when RM without E + P was used (p = 0.001). The feed conversion ratio (FCR) was enhanced and feed intake (FI) was improved with E + P. The combination of the RM mill, a 1.6 mm mean PS, and E + P improved FCR (three-way interaction, p = 0.019)), showing that for a higher PS, E + P is necessary for animal performance. Carcass yield was, on average, 80.1%. No effects on commercial cuts (breast, legs and wings) were observed. In contrast, abdominal fat was affected by mill type * PS (p = 0.012) and E + P * PS (p = 0.048) in a two-way interaction. The highest abdominal fat indicated an imbalance in the amino acid (AA)-to-AMEN ratio. Coarse PS promoted heavier gizzards (p = 0.02) but E + P tended to reduce them (p = 0.057). The processing steps improved pellet quality and feed efficiency associated with RM, coarse PS and E + P, highlighting the positive effects of E + P on abdominal fat and AMEN content, which should be adjusted to AA or reduced at formulation. However, these results are for an experimental processing plant and may not necessarily apply to larger plants, so the use of these data and methods should be considered as guidelines for replication at production sites.

3.
Animals (Basel) ; 12(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35565536

RESUMO

Soybean products are of high importance for the protein supply of poultry. Heat treatment of soybeans is essential to ensure optimal digestibility because of intrinsic antinutritive factors typical for this feed category. However, excessive treatment promotes the Maillard reaction and reduces protein digestibility. Furthermore, Europe's efforts are to decrease dependence on imports of soybean products and enlarge local production. This process will include an increase in the variability of soybean batches, posing great challenges to adequate processing conditions. Intrinsic soybean properties plus heat treatment intensity might be able to modulate the gut microbiota, which is of crucial importance for an animal's health and performance. To assess the influence of heat treatment and soybean variety on gut microbiota, 2 soybean cakes from 2 varieties were processed at 110 °C or 120 °C and subsequently fed to 336 one-day-old broiler chickens. After 36 days, the animals were slaughtered, and the digesta of the ileum and caecum was collected. Next, 16S rRNA amplicon sequencing of the extracted DNA revealed a high discrepancy between gut sections, but there were no differences between male and female birds. Significant differences attributed to the different soybean varieties and heat intensity were detected for certain bacterial taxa. However, no effect on specific families or genera appeared. In conclusion, the results indicated the potential of processing conditions and soybean variety as microbiota-modulating factors.

4.
Animals (Basel) ; 11(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073019

RESUMO

The usage of insects as an alternative protein source for broiler feeds may help to reduce the dependency on soybean meal (SBM) imports. Therefore, the present study aimed to evaluate the replacement of 15 (SL15) or 30% (SL30) of crude protein (CP) from SBM with Hermetia illucens (HI) defatted larvae meal regarding broiler performance, carcass traits, apparent ileal digestibility, intestinal morphology, and microbial metabolites. Concerning the performance, body weight was similar for the control (CON) and SL15, but lower for SL30 during all feeding phases. In addition, average daily feed intake was higher in SL15 and SL30 compared to CON in the starter phase, but this effect vanished during grower and finisher phase. The apparent ileal digestibility decreased for CP and some amino acids with increasing HI larvae meal in the diet. No or marginal alterations were observed for the intestinal morphometry as well as cecal microbial metabolites. In conclusion, partial replacement of 15% SBM CP with HI larvae meal in broiler diets without impairing animal performance or health seems possible. The growth suppression with 30% CP substitution may be caused by reduced apparent ileal digestibility but could not be clearly associated with adverse effects of hindgut fermentation or altered gut morphology.

5.
Poult Sci ; 100(3): 100885, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33516475

RESUMO

Two meat-type broiler lines, line A and line B were fed experimental diets from 22-42 d with objectives to determine the effects of dietary metabolizable energy (ME) levels on feed intake (FI), performance, body composition, and processing yield as affected by environmental grow-out temperatures. Two thousand fifty male chicks from line A and 2,050 male chicks from line B were reared in 90-floor pens, 45 chicks per pen utilizing primary breeder nutrition and husbandry guidelines for starter (1-10 d) and grower (11-21 d) phases. Experimental finisher diets consisted of 5 increasing levels of apparent nitrogen corrected ME (2,800, 2,925, 3,050, 3,175, and 3,300 kcal/kg set at 19.5% crude protein and 1.0% dLys at each level) to represent 80, 90, 100, 110, and 120% ME of Evonik AminoChick energy level giving 2 × 5 factorial design and were fed from 22-42 d. All other amino acid levels in diets were formulated to a fixed ratio of dLys level. There were nine replicate pens for each diet and each line. The experiment was conducted twice-once in hot season (barn averages: 77.55 ˚F and 86.04% RH) and another in cool season (barn averages: 69.91 ˚F and 63.98% RH) of the year. Results showed that FI and feed conversion ratios (FCR) decreased (P < 0.05) linearly (R2 = 0.9) by 61.25 g and 0.073 units for every 10% increase in dietary ME for combined analysis of lines and seasons. The % fat mass of total body mass increased by 0.57%, whereas % protein mass decreased by 0.21% across ME levels (R2 > 0.9). However, there was no difference (P > 0.05) in % weights (of live weight) for wings, breast filet, tenders, or leg quarters across ME levels for both lines except % fat pad that increased (P < 0.05) by 0.20% for each 10% increment in dietary ME level. Line B had higher cumulative FI, BW gain, % lean, and protein mass of body mass than line A in hot season (P < 0.05). Feed intake was not different between lines in cool season (P > 0.05), whereas higher BW and improved FCR were observed for line A. Line A had higher % fat mass in both seasons. In summary, performance and yield results as affected by dietary ME levels were line specific and were affected by grow-out seasons. The optimal dietary ME level for the ME range studied (2,800-3,000 kcal/kg) at a constant recommended amino acid level lies in determining the best performance and profitability indices by taking into account the grow-out production inputs and processing yield outputs.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Metabolismo Energético , Abrigo para Animais , Carne , Temperatura , Ração Animal/análise , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Dieta/veterinária , Abrigo para Animais/normas , Masculino , Carne/normas , Aumento de Peso/fisiologia
6.
Poult Sci ; 99(12): 6884-6898, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248604

RESUMO

Two broiler lines, Line A and Line B, were fed experimental diets from 22 to 42 d with objectives to determine effects of digestible amino acids (AA) to metabolizable energy ratios on feed intake (FI), performance, and processing yield. Experimental diets were formulated to 3,150 kcal/kg with 5 levels of digestible lysine (dLys)-80, 90, 100, 110, and 120% of recommended AA level giving g dLys/Mcal values of 2.53, 2.85, 3.17, 3.48, and 3.80, respectively. All other AA were formulated to a fixed ratio to dLys. A total of 4,050 chicks were utilized in each trial (9 replicate pens for each AA level and each line; 45 chicks/pen) conducted twice: one in hot environmental temperature (HT) (24 h mean ∼85.3 °F; 80.9% RH) and another in cool environmental temperature (CT) (24 h mean ∼71.6 °F; 61.7% RH). Results showed that FI was not impacted by dietary AA levels in HT for both lines. Higher FI (P < 0.05) was observed in CT for lower dietary AA levels (<100% AA level) for both lines, with overall higher FI occurring in Line B. Higher FI for Line B was also accompanied by higher body weight in HT and CT. Treatment diets had quadratic effects on average daily gain (ADG), feed conversion ratio (FCR), and processing yields (breasts and tenders) in both HT and CT, with broilers in CT performing better (P < 0.05). The optimal response values for ADG in HT and CT were 89.72 g and 113.44 g occurring at 120 and 109.5% AA level, respectively. The optimal response values for FCR in HT and CT were 1.79 and 1.58 occurring at 120 and 117.5% AA level, respectively. The optimal response values for breast meat yield in HT and CT were 575.9 g and 776.5 g occurring at 112.6 and 114.5% AA level, respectively. The optimal response values for tender meat yield in HT and CT were 119.8 g and 154.9 g occurring at 120 and 115% AA level, respectively. Line A had a higher breast and tender yield % (of live weight) for both environmental temperatures which correlated to body composition data with higher % protein mass and % digestible AA retention. In this study, findings indicated that effects of increased digestible AA density on FI, performance, and processing yield are specific to strain and grow-out temperature, but the optimum response was attained for both lines with diets containing 110 to 120% AA levels (3.48-3.80 g dLys/Mcal) during the 22 to 42 d finisher period.


Assuntos
Aminoácidos , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Temperatura , Aumento de Peso , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Metabolismo Energético , Abrigo para Animais , Aumento de Peso/fisiologia
7.
Langmuir ; 21(13): 5957-65, 2005 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15952847

RESUMO

A new strategy aiming at the protection of metallic surfaces against the growth of biofilms is presented here. This work reports the grafting of primary amines by aminosilanization of oxidized stainless steel followed by chemical coupling of the glycosidase lysozyme from hen egg white using glutaraldehyde as homobifunctional cross-linking agent. Controlled characterization of a stainless steel surface by X-ray photoelectron spectroscopy and Fourier transform infrared reflection-absorption spectroscopy at each step enabled the mode of binding, coverage, and orientation of the grafted molecules to be addressed. As a result, the stainless steel samples covered with a covalently immobilized layer of lysozyme showed some lytic activity on a suspension of bacteria Micrococcus lysodeikticus.


Assuntos
Enzimas Imobilizadas/metabolismo , Muramidase/metabolismo , Aço Inoxidável , Animais , Galinhas , Ovos , Enzimas Imobilizadas/química , Feminino , Indicadores e Reagentes , Cinética , Modelos Moleculares , Muramidase/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA