Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotheranostics ; 7(3): 316-326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064608

RESUMO

Host derived serum proteome stabilised red-emitting gold quantum clusters (or Au-QC-NanoSera or QCNS) of size range ~2 nm have been synthesised in a first reported study. The host serum was taken from bovine, murine and human origins to establish the proof of concept. In-vitro biocompatibility with normal murine L929 fibroblast cells and radiosensitisation ability against PLC/PRF/5 hepatoma cells was established. A concentration dependant radiosensitisation effect of QCNS at differential γ-radiation doses was observed with almost 90% killing of cancer cells at a radiation dose of 5Gy. Acute and subacute safety, and non-immunogenicity of autologously derived QCNS was established in in-bred C57BL/6 mice. The biodistribution analysis revealed that the QCNS were effectively cleared from the body over a course of 28 days and were found to pose no major threat to the proper functioning and morphology of the mice.


Assuntos
Proteínas Sanguíneas , Medicina de Precisão , Animais , Bovinos , Humanos , Camundongos , Distribuição Tecidual , Camundongos Endogâmicos C57BL , Linhagem Celular
2.
J Mater Chem B ; 10(47): 9869-9877, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36437801

RESUMO

The current scenario of antibiotic-resistant bacteria and pandemics caused by viruses makes research in the area of antibacterial and antiviral materials and surfaces more urgent than ever. In this regard, salicylideneimine based tetracoordinate boron-containing organic compounds are emerging as a new class of photosensitizers for singlet oxygen generation. However, the inherent inability of small organic molecules to be processed limits their potential use in functional coatings. Here we show the synthesis of a novel polymer functionalized with diiodosalicylideneimine-boron difluoride (PEI-BF2) and its utility for surface coating inside glass vials via layer-by-layer (LbL) assembly. The multilayer thin films are characterized using AFM and UV-Vis spectroscopy and the resultant coatings display excellent stability. The multilayer coating could be activated using visible light, and owing to the photocatalytic activity of the incorporated PEI-BF2, the surface coating is able to generate singlet oxygen efficiently upon light irradiation. Further, the multilayer coated surfaces exhibit remarkable antimicrobial activity towards both Gram-positive and Gram-negative bacteria under a variety of conditions. Thus, owing to the simple synthesis and the convenient methodology adopted for the preparation of multilayer coatings, the material reported here could pave the way for the development of sunlight activated large area self-sterile surfaces.


Assuntos
Antibacterianos , Oxigênio Singlete , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Luz
3.
ACS Biomater Sci Eng ; 8(5): 2053-2065, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35416030

RESUMO

Disintegrable inorganic nanoclusters (GIONs) with gold seed (GS) coating of an iron oxide core with a primary nanoparticle size less than 6 nm were prepared for theranostic applications. The GIONs possessed a broad near-infrared (NIR) absorbance at ∼750 nm because of plasmon coupling between closely positioned GSs on the iron oxide nanoclusters (ION) surface, in addition to the ∼513 nm peak corresponding to the isolated GS. The NIR laser-triggered photothermal response of GIONs was found to be concentration-dependent with a temperature rise of ∼8.5 and ∼4.5 °C from physiological temperature for 0.5 and 0.25 mg/mL, respectively. The nanoclusters were nonhemolytic and showed compatibility with human umbilical vein endothelial cells up to a concentration of 0.7 mg/mL under physiological conditions. The nanoclusters completely disintegrated at a lysosomal pH of 5.2 within 1 month. With an acute increase of over 400% intracellular reactive oxygen species soon after γ-irradiation and assistance from Fenton reaction-mediated supplemental oxidative stress, GION treatment in conjunction with radiation killed ∼50% of PLC/PRF/5 hepatoma cells. Confocal microscopy images of these cells showed significant cytoskeletal and nuclear damage from radiosensitization with GIONs. The cell viability further decreased to ∼10% when they were sequentially exposed to the NIR laser followed by γ-irradiation. The magnetic and optical properties of the nanoclusters enabled GIONs to possess a T2 relaxivity of ∼223 mM-1 s-1and a concentration-dependent strong photoacoustic signal toward magnetic resonance and optical imaging. GIONs did not incur any organ damage or evoke an acute inflammatory response in healthy C57BL/6 mice. Elemental analysis of various organs indicated differential clearance of gold and iron via both renal and hepatobiliary routes.


Assuntos
Hipertermia Induzida , Nanopartículas , Animais , Linhagem Celular Tumoral , Células Endoteliais , Ouro/química , Ouro/uso terapêutico , Hipertermia Induzida/métodos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Fototerapia/métodos , Medicina de Precisão
4.
ACS Omega ; 7(10): 8928-8937, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35309447

RESUMO

Inorganic nanomaterials require optimal engineering to retain their functionality yet can also biodegrade within physiological conditions to avoid chronic accumulation in their native form. In this work, we have developed gelatin-stabilized iron oxide nanoclusters having a primary crystallite size of ∼10 nm and surface-functionalized with indocyanine green (ICG)-bound albumin-stabilized gold nanoclusters (Prot-IONs). The Prot-IONs are designed to undergo disintegration in an acidic microenvironment of tumor in the presence of proteolytic enzymes within 72 h. These nanoassemblies demonstrate bio- and hemocompatibility and show significant photothermal efficiency due to strong near infrared absorption contributed by ICG. The surface gold nanoclusters could efficiently sensitize hepatoma cells to γ-irradiation with substantial cytoskeletal and nuclear damage. Sequential irradiation of Prot-ION-treated cancer cells with near infrared (NIR) laser (λ = 750 nm) and γ-irradiation could cause ∼90% cell death compared to single treatment groups at a lower dose of nanoparticles. The superparamagnetic nature of Prot-IONs imparted significant relaxivity (∼225 mM-1 s-1) for T2-weighted magnetic resonance imaging. Additionally, they could also be engaged as photoacoustic and NIR imaging contrast agents. This work demonstrates bioeliminable inorganic nanoassemblies with significant theranostic potential.

5.
ACS Appl Bio Mater ; 5(3): 1169-1178, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35191305

RESUMO

Graphitic carbon nitride (also known as g-CN or g-C3N4) has the intrinsic ability to generate electron-hole pairs under visible light illumination, resulting in the generation of reactive oxygen species (ROS). We report g-CN quantum dots (g-CNQDs) as a standalone photodynamic transducer for imparting significant oxidative stress in glioma cells, manifested by the loss of mitochondrial membrane potential. With an optimized treatment time, visible light source, and exposure window, the photodynamic treatment with g-CNQDs could achieve ∼90% cancer cell death via apoptosis. The g-CNQDs, otherwise biocompatible with normal cells up to 5 mg/mL, showed ∼20% necrotic cancer cell death in the absence of light due to membrane damage induced by a charge shielding effect at the acidic pH prevailing in the tumor environment. Acute toxicity analysis in C57BL/6 mice with intravenously injected g-CNQDs at a 20 mg/kg dose showed no signs of inflammatory response or organ damage.


Assuntos
Neoplasias , Pontos Quânticos , Animais , Luz , Camundongos , Camundongos Endogâmicos C57BL , Nitrilas , Estresse Oxidativo , Pontos Quânticos/toxicidade
6.
Carbohydr Polym ; 237: 116170, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241417

RESUMO

Poly (lactide-co-glycolide) (PLGA) nanoparticles surface functionalized with water soluble glycol chitosan (GC) and carboxymethyl chitosan (CMC) has been studied for their drug (Paclitaxel and Doxorubicin) loading, yield, cellular uptake, serum protein adsorption and hemocompatibility. It was observed that Paclitaxel (Ptxl) phase out as Extraneous Ptxl Precipitates (EPP) (>25 %) in case of uncoated and CMC coated low molecular weight (LMW) PLGA nanoparticles (PNPs). The EPP formation was significantly reduced to ∼5 % with GC coating as it enhanced LMW PLGA precipitation and yield predominantly spherical polymeric nanoparticles towards better encapsulation of Ptxl and thus uniform intracellular drug distribution. Interestingly, protein corona analysis showed cmcPNPs and gcPNPs to be distinct from each other in associating mainly with serum proteins of molecular weight < 30 kDa and >30 kDa respectively. While CMC functionalization showed >10 % hemolysis, at similar concentration GC coating was found to provide superior hemocompatibility even in the absence of protein corona.


Assuntos
Antineoplásicos Fitogênicos , Quitosana , Nanopartículas , Paclitaxel , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Precipitação Química , Quitosana/administração & dosagem , Quitosana/química , Liberação Controlada de Fármacos , Eritrócitos/efeitos dos fármacos , Cabras , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Coroa de Proteína , Ratos
7.
Chem Commun (Camb) ; 55(39): 5623-5626, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31025682

RESUMO

Design of photosensitizers capable of generating singlet oxygen is crucial for the success of photodynamic therapy, and biocompatible supramolecular systems are emerging in this area. We report a supramolecular nanocomposite consisting of BODIPY, tryptophan and gold nanoparticles. While the individual components in isolation were inactive, the nanocomposite was found to be photostable and exhibited efficient photosensitization properties.

8.
ACS Biomater Sci Eng ; 5(12): 6590-6601, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33423478

RESUMO

A mesoporous magnetic nanohybrid functionalized with 14 wt % carbon nitride (CN) and loaded with curcumin (Cur) has been developed as a combination platform for photodynamic therapy and magnetic hyperthermia. CN-Cur complexes on the nanoparticle surface facilitate fast charge separation of hole-electron pairs under blue LED light irradiation and subsequent singlet oxygen generation. Cur release from the nanoparticle was significant only when exposed to both lysosomal pH (pH = 5.2) and an alternating current magnetic field (AMF). The mesoporous magnetic carbon nitride (MMCN) caused a 350% increase in the level of intracellular ROS as compared to the light exposed untreated control group. The nanohybrid was non-hemolytic and found to be biocompatible with HUVEC cells at concentrations up to 360 µg/mL. A similar concentration under AMF exposure caused a localized temperature rise of 4.2 °C and resulted in a 60% reduction in C6 cell viability. The cancer cell death further increased up to 80% under sequential exposure to light and AMF. The combinatorial treatment exerted significant cytoskeletal and nuclear damage in the cancer cells as assessed by confocal microscopy. The nanohybrid also exhibited relaxivity of 88 mM-1 s-1, imparting significant T2 weighted contrast to the cancer cells.

9.
Chempluschem ; 83(5): 418-422, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-31957367

RESUMO

The synthesis of water-soluble chitosan nanocomposites incorporating BODIPY and the investigation of their photosensitization properties is reported. It was observed that the singlet oxygen generation capability of nanocomposites containing a mixture of BODIPY and iodine-containing molecules are higher than that of the nanocomposites containing BODIPY alone. It is hypothesized that the supramolecular interactions between BODIPY and iodine-containing molecules confined within the nanocomposites lead to the enhanced singlet oxygen generation.

10.
Int J Biol Macromol ; 110: 39-53, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29056467

RESUMO

Gold nanostructures are promising entities for various biomedical applications, due to their promising physical and optical properties. They can be tailored in different sizes and shapes to play vital roles for photothermal therapy, Biosensing, in vivo X-ray/CT contrast etc. Many biomacromolecules have been used for chemical reduction of ionic gold into zero-valent metallic nanoparticles of specific shape/size followed by stabilizing them for long term utilization. This review will sum up a range of biomacromolecules including Alginate, Agarose, Starch, Carragenan, Cellulose, Chitin, Chitosan, Collagen, Cyclodextrins, Chondrotin Sulfate, Dextran Sulfate, Fucoidan, Gelatin, Guar Gum and Hyaluronic Acid, whose functionalities have been explored in combination with gold nanoparticles for various biomedical applications.


Assuntos
Ouro/uso terapêutico , Hipotermia Induzida/métodos , Nanopartículas Metálicas/uso terapêutico , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Humanos
11.
Int J Biol Macromol ; 110: 392-398, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29174361

RESUMO

Multifunctional biodegradable nanomaterials that could be used for both imaging and therapy are being researched extensively. A simple technique to synthesize multifunctional nanoparticles without compromising on any of their functionality is a challenge. We have attempted to optimize a two-step procedure of gold coated polymeric template involving 1) Single pot synthesis of PLGA nanoparticles with cationic surface charge using glycol chitosan and 2) in situ gold coating for formation of gold coated PLGA nanoshell (AuPLGA-NS). These gold-coated PLGA nanoparticles were explored for photothermal therapy (PTT) and as X-ray/CT contrast agents. Biocompatibility and photothermal cytotoxicity of AuPLGA-NS were evaluated in-vitro and results confirmed the therapeutic efficacy of these particles resulting in 80% cancer cell death. Besides, it also showed potential X-ray/CT imaging ability with contrast equivalent to that of Iodine. The results demonstrated that these gold-coated PLGA nanoparticles synthesized by a simple approach could be used as a multifunctional nanosystem for cancer theranostics.


Assuntos
Antineoplásicos , Neoplasias da Mama/terapia , Quitosana , Ouro , Hipertermia Induzida/métodos , Nanoconchas , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quitosana/química , Quitosana/farmacologia , Feminino , Ouro/química , Ouro/farmacologia , Humanos , Ácido Láctico/química , Ácido Láctico/farmacologia , Células MCF-7 , Camundongos , Nanoconchas/química , Nanoconchas/uso terapêutico , Oxirredução , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA