Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 28: 101188, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39221210

RESUMO

Paper based point-of-care (PoC) detection platforms applying lateral flow assays (LFAs) have gained paramount approval in the diagnostic domain as well as in environmental applications owing to their ease of utility, low cost, and rapid signal readout. It has centralized the aspect of self-evaluation exhibiting promising potential in the last global pandemic era of Covid-19 implementing rapid management of public health in remote areas. In this perspective, the present review is focused towards landscaping the current framework of LFAs along with integration of components and characteristics for improving the assay by pushing the detection limits. The review highlights the synergistic aspects of assay designing, sample enrichment strategies, novel nanomaterials-based signal transducers, and high-end analytical techniques that contribute significantly towards sensitivity and specificity enhancement. Various recent studies are discussed supporting the innovations in LFA systems that focus upon the accuracy and reliability of rapid PoC testing. The review also provides a comprehensive overview of all the possible difficulties in commercialization of LFAs subjecting its applicability to pathogen surveillance, water and food testing, disease diagnostics, as well as to agriculture and environmental issues.

2.
Small Methods ; : e2400443, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39188200

RESUMO

Biomolecular aggregates ensure the optimum concentration and proximity required for biochemical processes to take place. Synthetic aggregating systems are becoming increasingly essential to study/mimic dynamic condensates in nature. Herein the ratiometric DNA aggregation of self-assembled DNA constructs using lanthanide salts is reported. In addition, the aggregation is shown to be reversed by the addition of specific lanthanide-binding ligands. The aggregate formation is confirmed by dynamic light scattering experiment, electrophoretic mobility shift assay, and field emission scanning electron microscope. This programmed DNA aggregation and its reversion are applied to evaluating the lanthanide-DNA and lanthanide-ligand binding constants, respectively. To achieve this, Forster resonance energy transfer (FRET) pair dyes at the 3' or 5' end of the DNA strands are strategically placed that generate unique fluorescence patterns upon interaction with the DNA constructs and different triggers such as lanthanides/ligands/monovalent cations, thus enabling the tracking of various states of binding. It also demonstrates a "fast method" to form and stabilize G-quadruplex (GQ) using lanthanides which complements the existing slow formation of GQs with Na+/K+ ions. The formation of GQ by lanthanides is corroborated by FRET, circular dichroism (CD), and enzyme linked immunosorbent assay (ELISA) experiments. These DNA constructs, formed by lanthanides, have shown resistance to cleavage by DNase I, and distinctive binding to Protoporphyrin dyes and Thioflavin T.

4.
J Am Soc Nephrol ; 34(2): 220-240, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283811

RESUMO

BACKGROUND: Translation shutdown is a hallmark of late-phase, sepsis-induced kidney injury. Methods for controlling protein synthesis in the kidney are limited. Reversing translation shutdown requires dephosphorylation of the eukaryotic initiation factor 2 (eIF2) subunit eIF2 α ; this is mediated by a key regulatory molecule, protein phosphatase 1 regulatory subunit 15A (Ppp1r15a), also known as GADD34. METHODS: To study protein synthesis in the kidney in a murine endotoxemia model and investigate the feasibility of translation control in vivo by boosting the protein expression of Ppp1r15a, we combined multiple tools, including ribosome profiling (Ribo-seq), proteomics, polyribosome profiling, and antisense oligonucleotides, and a newly generated Ppp1r15a knock-in mouse model and multiple mutant cell lines. RESULTS: We report that translation shutdown in established sepsis-induced kidney injury is brought about by excessive eIF2 α phosphorylation and sustained by blunted expression of the counter-regulatory phosphatase Ppp1r15a. We determined the blunted Ppp1r15a expression persists because of the presence of an upstream open reading frame (uORF). Overcoming this barrier with genetic and antisense oligonucleotide approaches enabled the overexpression of Ppp1r15a, which salvaged translation and improved kidney function in an endotoxemia model. Loss of this uORF also had broad effects on the composition and phosphorylation status of the immunopeptidome-peptides associated with the MHC-that extended beyond the eIF2 α axis. CONCLUSIONS: We found Ppp1r15a is translationally repressed during late-phase sepsis because of the existence of an uORF, which is a prime therapeutic candidate for this strategic rescue of translation in late-phase sepsis. The ability to accurately control translation dynamics during sepsis may offer new paths for the development of therapies at codon-level precision. PODCAST: This article contains a podcast at.


Assuntos
Injúria Renal Aguda , Endotoxemia , Animais , Camundongos , Biossíntese de Proteínas , Fases de Leitura Aberta , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Endotoxemia/complicações , Modelos Animais de Doenças , Injúria Renal Aguda/genética , Proteína Fosfatase 1
5.
Proteomics Clin Appl ; 17(2): e2200063, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36189891

RESUMO

PURPOSE: Chronic kidney disease (CKD) is defined by a reduced renal function, that is, glomerular filtration rate, and the extent of kidney damage is assessed by determining serum creatinine levels and proteins in urine, diagnosed as proteinuria/albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush border membranes (BBMs) on PT cells are important in maintaining the stability of PT functions. EXPERIMENTAL DESIGN: An LC-MS/MS bottom-up proteomics analysis of BBMs from four groups of rat models was applied to investigate protein abundance alterations associated with CKD progression. Moreover, systems biology analyses were used to identify key proteins that can provide insight into the different regulated molecular pathways and processes associated with CKD. RESULTS: Our results indicated that 303 proteins showed significantly altered expressions from the severe CKD BBM group when compared to the control. Focusing on renal diseases, several proteins including Ctnnb1, Fah, and Icam1 were annotated to kidney damage and urination disorder. The up-regulation of Ctnnb1 (ß-catenin) could contribute to CKD through the regulation of the WNT signaling pathway. CONCLUSION AND CLINICAL RELEVANCE: Overall, the study of protein abundance changes in BBMs from rat models helps to reveal protein corrections with important pathways and regulator effects involved in CKD. Although this study is focused on rat models, the results provided more information for a deeper insight into possible CKD mechanisms in humans.


Assuntos
Albuminúria , Insuficiência Renal Crônica , Humanos , Ratos , Animais , Albuminúria/complicações , Albuminúria/diagnóstico , Microvilosidades , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Rim/metabolismo
6.
J Biol Chem ; 298(10): 102371, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970386

RESUMO

Kidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.


Assuntos
Albuminas , Asparagina , Túbulos Renais Proximais , Receptores de Superfície Celular , Animais , Ratos , Albuminas/metabolismo , Endocitose/fisiologia , Glicosilação , Túbulos Renais Proximais/metabolismo , Proteinúria/metabolismo , Asparagina/genética , Asparagina/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
7.
Protein J ; 41(3): 381-393, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35674860

RESUMO

A class of plant defense and storage proteins, including Putranjiva roxburghii PNP protein (PRpnp), belongs to PNP-UDP family. The PRpnp and related plant proteins contain a disrupted PNP-UDP domain as revealed in previous studies. In PRpnp, the insert disrupting the domain contains the trypsin inhibitory site. In the present work, we analyzed native PRpnp (nPRpnp) complex formation with trypsin and inosine using SAXS experiments and established its dual functionality. Results indicated a relatively compact nPRpnp:Inosine structure, whereas trypsin complex showed conformational changes/flexibility. nPRpnp also exhibited a strong anti-cancer activity toward breast cancer (MCF-7), prostate cancer (DU-145) and hepatocellular carcinoma (HepG2) cell lines. MCF-7 and DU-145 were more sensitive to nPRpnp treatment as compared to HepG2. However, nPRpnp treatment showed no effect on the viability of HEK293 cells indicating that nPRpnp is specific for targeting the viability of only cancer cells. Further, acridine orange, DAPI and DNA fragmentation studies showed that cytotoxic effect of nPRpnp is mediated through induction of apoptosis as evident from the apoptosis-associated morphological changes and nuclear fragmentation observed after PRpnp treatment of cancer cells. These results suggest that PRpnp has the potential to be used as an anticancer agent. This is first report of anticancer activity as well as SAXS-based analysis for a PNP enzyme with trypsin inhibitory activity.


Assuntos
Antineoplásicos , Magnoliopsida , Neoplasias , Antineoplásicos/farmacologia , Apoptose , Células HEK293 , Células Hep G2 , Humanos , Inosina/farmacologia , Células MCF-7 , Magnoliopsida/química , Masculino , Neoplasias/tratamento farmacológico , Proteínas de Plantas/farmacologia , Espalhamento a Baixo Ângulo , Tripsina/metabolismo , Difosfato de Uridina/farmacologia , Difração de Raios X
8.
Physiol Rev ; 102(4): 1625-1667, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35378997

RESUMO

For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.


Assuntos
Albuminas , Túbulos Renais Proximais , Albuminas/metabolismo , Transporte Biológico , Endocitose/fisiologia , Humanos , Túbulos Renais Proximais/metabolismo
9.
Biomolecules ; 11(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34827558

RESUMO

Chronic kidney disease (CKD) is defined as a decrease in renal function or glomerular filtration rate (GFR), and proteinuria is often present. Proteinuria increases with age and can be caused by glomerular and/or proximal tubule (PT) alterations. PT cells have an apical brush border membrane (BBM), which is a highly dynamic, organized, and specialized membrane region containing multiple glycoproteins required for its functions including regulating uptake, secretion, and signaling dependent upon the physiologic state. PT disorders contribute to the dysfunction observed in CKD. Many glycoprotein functions have been attributed to their N- and O-glycans, which are highly regulated and complex. In this study, the O-glycans present in rat BBMs from animals with different levels of kidney disease and proteinuria were characterized and analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). A principal component analysis (PCA) documented that each group has distinct O-glycan distributions. Higher fucosylation levels were observed in the CKD and diabetic groups, which may contribute to PT dysfunction by altering physiologic glycoprotein interactions. Fucosylated O-glycans such as 1-1-1-0 exhibited higher abundance in the severe proteinuric groups. These glycomic results revealed that differential O-glycan expressions in CKD progressions has the potential to define the mechanism of proteinuria in kidney disease and to identify potential therapeutic interventions.


Assuntos
Microvilosidades , Animais , Taxa de Filtração Glomerular , Glicosilação , Ratos , Insuficiência Renal Crônica
10.
Biomolecules ; 11(11)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34827675

RESUMO

Chronic kidney disease (CKD) is defined by a reduced renal function i.e., glomerular filtration rate (GFR), and the presence of kidney damage is determined by measurement of proteinuria or albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush-border membranes (BBMs) on PT cells play an important role in maintaining the stability of PT functions. The PT BBM, a highly dynamic, organized, specialized membrane, contains a variety of glycoproteins required for the functions of PT. Since protein glycosylation regulates many protein functions, the alteration of glycosylation due to the glycan changes has attracted more interests for a variety of disease studies recently. In this work, liquid chromatography-tandem mass spectrometry was utilized to analyze the abundances of permethylated glycans from rats under control to mild CKD, severe CKD, and diabetic conditions. The most significant differences were observed in sialylation level with the highest present in the severe CKD and diabetic groups. Moreover, high mannose N-glycans was enriched in the CKD BBMs. Characterization of all the BBM N-glycan changes supports that these changes are likely to impact the functional properties of the dynamic PT BBM. Further, these changes may lead to the potential discovery of glycan biomarkers for improved CKD diagnosis and new avenues for therapeutic treatments.


Assuntos
Microvilosidades , Animais , Glicômica , Glicosilação , Rim , Ratos
11.
Am J Physiol Renal Physiol ; 320(1): F114-F129, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283642

RESUMO

Chronic kidney disease results in high serum urea concentrations leading to excessive protein carbamylation, primarily albumin. This is associated with increased cardiovascular disease and mortality. Multiple methods were used to address whether carbamylation alters albumin metabolism. Intravital two-photon imaging of the Munich Wistar Frömter (MWF) rat kidney and liver allowed us to characterize filtration and proximal tubule uptake and liver uptake. Microscale thermophoresis enabled quantification of cubilin (CUB7,8 domain) and FcRn binding. Finally, multiple biophysical methods including dynamic light scattering, small-angle X-ray scattering, LC-MS/MS and in silico analyses were used to identify the critical structural alterations and amino acid modifications of rat albumin. Carbamylation of albumin reduced binding to CUB7,8 and FcRn in a dose-dependent fashion. Carbamylation markedly increased vascular clearance of carbamylated rat serum albumin (cRSA) and altered distribution of cRSA in both the kidney and liver at 16 h post intravenous injection. By evaluating the time course of carbamylation and associated charge, size, shape, and binding parameters in combination with in silico analysis and mass spectrometry, the critical binding interaction impacting carbamylated albumin's reduced FcRn binding was identified as K524. Carbamylation of RSA had no effect on glomerular filtration or proximal tubule uptake. These data indicate urea-mediated time-dependent carbamylation of albumin lysine K524 resulted in reduced binding to CUB7,8 and FcRn that contribute to altered albumin transport, leading to increased vascular clearance and increased liver and endothelial tissue accumulation.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Túbulos Renais Proximais/metabolismo , Fígado/metabolismo , Receptores Fc/metabolismo , Insuficiência Renal Crônica/metabolismo , Albumina Sérica/metabolismo , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Túbulos Renais Proximais/fisiopatologia , Lisina , Masculino , Microscopia de Fluorescência por Excitação Multifotônica , Ligação Proteica , Carbamilação de Proteínas , Ratos Endogâmicos , Ratos Sprague-Dawley , Receptores de Superfície Celular/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Espalhamento a Baixo Ângulo , Espectrometria de Massas em Tandem , Fatores de Tempo , Difração de Raios X
12.
Sci Rep ; 10(1): 20813, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257730

RESUMO

M. tuberculosis GmhA enzyme catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-α-manno-heptose-7-phosphate in GDP-D-glycero-α-D-manno-heptose biosynthetic pathway. The D-glycero-α-D-manno-heptose is a major constituent of lipopolysaccharide and contributes to virulence and antibiotic resistance to mycobacteria. In current study, we have performed the structural and biochemical analysis of M. tuberculosis GmhA, the first enzyme involved in D-sedoheptulose 7-phosphate isomerization in GDP-D-α-D-heptose biosynthetic pathway. The MtbGmhA enzyme exits as tetramer and small angle X-ray scattering analysis also yielded tetrameric envelope in solution. The MtbGmhA enzyme binds to D-sedoheptulose 7-phosphate with Km ~ 0.31 ± 0.06 mM-1 and coverts it to D-glycero-D-α-manno-heptose-7-phosphate with catalytic efficiency (kcat/Km) ~ 1.45 mM-1 s-1. The residues involved in D-sedoheptulose 7-phosphate and Zn2+ binding were identified using modeled MtbGmhA + D-sedoheptulose 7-phosphate + Zn2+ structure. To understand the role in catalysis, six site directed mutants of MtbGmhA were generated, which showed significant decrease in catalytic activity. The circular dichroism analysis showed ~ 46% α-helix, ~ 19% ß-sheet and ~ 35% random coil structures of MtbGmhA enzyme and melting temperature ~ 53.5 °C. Small angle X-ray scattering analysis showed the tetrameric envelope, which fitted well with modeled MtbGmhA tetramer in closed conformation. The MtbGmhA dynamics involved in D-sedoheptulose 7-phosphate and Zn2+ binding was identified using dynamics simulation and showed enhanced stability in presence of these ligands. Our biochemical data and structural knowledge have provided insight into mechanism of action of MtbGmhA enzyme, which can be targeted for novel antibiotics development against M. tuberculosis.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/biossíntese , Mycobacterium tuberculosis/enzimologia , Fosfatos Açúcares/metabolismo , Aldose-Cetose Isomerases/química , Dicroísmo Circular , Modelos Moleculares
13.
Int J Biol Macromol ; 165(Pt A): 375-387, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987071

RESUMO

Tuberculosis, caused by pathogenic M. tuberculosis, remains a global health concern among various infectious diseases. Studies show that ClpB, a major disaggregase, protects the pathogen from various stresses encountered in the host environment. In the present study we have performed a detailed biophysical characterization of M. tuberculosis ClpB followed by a high throughput screening to identify small molecule inhibitors. The sedimentation velocity studies reveal that ClpB oligomerization varies with its concentration and presence of nucleotides. Further, using high throughput malachite green-based screening assay, we identified potential novel inhibitors of ClpB ATPase activity. The enzyme kinetics revealed that the lead molecule inhibits ClpB activity in a competitive manner. These drugs were also able to inhibit ATPase activity associated with E. coli ClpB and yeast Hsp104. The identified drugs inhibited the growth of intracellular bacteria in macrophages. Small angle X-ray scattering based modeling shows that ATP, and not its non-hydrolyzable analogs induce large scale conformational rearrangements in ClpB. Remarkably, the identified small molecules inhibited these ATP inducible conformational changes, suggesting that nucleotide induced shape changes are crucial for ClpB activity. The study broadens our understanding of M. tuberculosis chaperone machinery and provides the basis for designing more potent inhibitors against ClpB chaperone.


Assuntos
Antituberculosos/química , Proteínas de Bactérias , Endopeptidase Clp , Proteínas de Choque Térmico , Mycobacterium tuberculosis/enzimologia , Inibidores de Proteases/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Endopeptidase Clp/antagonistas & inibidores , Endopeptidase Clp/química , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/química , Multimerização Proteica
14.
Virology ; 548: 250-260, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32791353

RESUMO

Chikungunya has re-emerged as an epidemic with global distribution and high morbidity, necessitating the need for effective therapeutics. We utilized already approved drugs with a good safety profile used in other diseases for their new property of anti-chikungunya activity. It provides a base for a fast and efficient approach to bring a novel therapy from bench to bedside by the process of drug-repositioning. We utilized an in-silico drug screening with FDA approved molecule library to identify inhibitors of the chikungunya nsP2 protease, a multifunctional and essential non-structural protein required for virus replication. Telmisartan, an anti-hypertension drug, and the antibiotic novobiocin emerged among top hits on the screen. Further, SPR experiments revealed strong in-vitro binding of telmisartan and novobiocin to nsP2 protein. Additionally, small angle x-ray scattering suggested binding of molecules to nsP2 and post-binding compaction and retention of monomeric state in the protein-inhibitor complex. Protease activity measurement revealed that both compounds inhibited nsP2 protease activity with IC50 values in the low micromolar range. More importantly, plaque formation assays could show the effectiveness of these drugs in suppressing virus propagation in host cells. We propose novobiocin and telmisartan as potential inhibitors of chikungunya replication. Further research is required to establish the molecules as antivirals of clinical relevance against chikungunya.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/virologia , Vírus Chikungunya/efeitos dos fármacos , Novobiocina/farmacologia , Telmisartan/farmacologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
15.
Int J Biol Macromol ; 136: 676-685, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31207333

RESUMO

The M. tuberculosis GmhB protein converts the d-glycero-α-d-manno-heptose 1,7-bisphosphate (GMB) intermediate into d-glycero-α-d-manno-heptose 1-phosphate by removing the phosphate group at the C-7 position. To understand the structure and substrate binding mechanism, the MtbGmhB was purified which elutes as monomer on gel filtration column. The small angle x-ray scattering analysis shows that MtbGmhB forms fully folded monomer with shape profile similar to its modeled structure. The circular dichroism analysis shows 38% α-helix, 15% ß-sheets and 47% random coil structures in MtbGmhB, similar to haloalkanoic acid dehalogenase (HAD) phosphohydrolase enzymes. The modeled MtbGmhB structure shows the catalytic site, which forms a concave, semicircular surface using the three loops around GMB substrate binding site. Dynamic simulation analysis on (i) Apo (ii) GMB bound (iii) GMB + Mg2+ bound (iv) Zn2+ +GMB + Mg2+ bound MtbGmhB structures show that Zn2+ as well as Mg2+ ions stabilize the loop conformation and trigger the changes in GMB substrate binding to active site of MtbGmhB. Upon demetallization, the large conformational changes occurred in ions binding loops, and leads to difference in GMB substrate binding to MtbGmhB. Our study provides information about structure and substrate binding of MtbGmhB, which may contribute in therapeutic development against M. tuberculosis.


Assuntos
Guanosina Difosfato/biossíntese , Heptoses/biossíntese , Mycobacterium tuberculosis/enzimologia , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Domínio Catalítico , Magnésio/metabolismo , Simulação de Acoplamento Molecular , Zinco/metabolismo
16.
Sci Rep ; 8(1): 12602, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135452

RESUMO

Here, we report that minimal functional gelsolin i.e. fragment 28-161 can display F-actin depolymerizing property even after heating the protein to 80 °C. Small angle X-ray scattering (SAXS) data analysis confirmed that under Ca2+-free conditions, 28-161 associates into monomer to dimer and tetramer, which later forms ß-amyloids, but in presence of Ca2+, it forms dimers which proceed to non-characterizable aggregates. The dimeric association also explained the observed decrease in ellipticity in circular dichroism experiments with increase in temperature. Importantly, SAXS data based models correlated well with our crystal structure of dimeric state of 28-161. Characterization of higher order association by electron microscopy, Congo red and ThioflavinT staining assays further confirmed that only in absence of Ca2+ ions, heating transforms 28-161 into ß-amyloids. Gel filtration and other experiments showed that ß-amyloids keep leaching out the monomer, and the release rates could be enhanced by addition of L-Arg to the amyloids. F-actin depolymerization showed that addition of Ca2+ ions to released monomer initiated the depolymerization activity. Overall, we propose a way to compose a supramolecular assembly which releases functional protein in sustained manner which can be applied for varied potentially therapeutic interventions.


Assuntos
Actinas/metabolismo , Gelsolina/metabolismo , Citoesqueleto de Actina , Fatores de Despolimerização de Actina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cristalografia por Raios X , Gelsolina/fisiologia , Temperatura Alta , Modelos Moleculares , Ligação Proteica , Desnaturação Proteica , Temperatura , Difração de Raios X
17.
Biochemistry ; 57(16): 2359-2372, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29637772

RESUMO

Gelsolin is an actin-severing protein that attains an open functional conformation in the presence of Ca2+ or low pH. Mutations (D187N/Y) in the second domain of gelsolin trigger the proteolytic pathway producing amyloidogenic fragments that form the pathological hallmark of gelsolin amyloidosis and lattice corneal dystrophy type 2 (LCD2). Here, we show that the D187N mutant gelsolin in a Ca2+ depleted, low pH-activated, open conformation could assemble into amyloidogenic oligomers without necessarily undergoing the specific proteolytic step. Although both wild-type (WT) and mutant proteins exhibit closely overlapping globular shapes at physiological conditions, the latter exhibits subjugated actin depolymerization, loss of thermodynamic stability, and folding cooperativity. Mutant gelsolin displayed aberrant conformational unwinding and formed structural conformers with high associative properties at low pH conditions. A SAXS intensity profile and Guinier analysis of these conformers showed the formation of unusual, higher order aggregates. Extended incubation at low pH resulted in the formation of thioflavin T and Congo red positive, ß-sheet rich aggregates with a fibrillar, amyloid-like morphology visible under electron and atomic force microscopy. Mass spectrometric analysis of disaggregated end-stage fibrils displayed peptide fragments encompassing the entire protein sequence, indicating the involvement of full length mutant gelsolin in fibril formation. Atomistic and REMD simulations indicated a larger increase in solvent accessibility and loss of fold architecture in mutant gelsolin at low pH as compared to WT gelsolin. Our findings support the existence of a secondary oligomerization-dependent aggregation pathway associated with gelsolin amyloidosis and can pave the way for better therapeutic strategies.


Assuntos
Proteínas Amiloidogênicas/genética , Gelsolina/genética , Proteínas Mutantes/genética , Conformação Proteica , Sequência de Aminoácidos/genética , Amiloide/química , Amiloide/genética , Proteínas Amiloidogênicas/química , Gelsolina/química , Humanos , Microscopia de Força Atômica , Proteínas Mutantes/química , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/genética , Estabilidade Proteica , Proteólise , Difração de Raios X
18.
Int J Parasitol Drugs Drug Resist ; 7(3): 337-349, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28988014

RESUMO

Emergence of Amphotericin B (AmB) resistant Leishmania donovani has posed major therapeutic challenge against the parasite. Consequently, combination therapy aimed at multiple molecular targets, based on proteome wise network analysis has been recommended. In this regard we had earlier identified and proposed L-asparaginase of Leishmania donovani (LdAI) as a crucial metabolic target. Here we report that both LdAI overexpressing axenic amastigote and promastigote forms of L. donovani survives better when challenged with AmB as compared to wild type strain. Conversely, qRT-PCR analysis showed an upregulation of LdAI in both forms upon AmB treatment. Our data demonstrates the importance of LdAI in imparting immediate protective response to the parasite upon AmB treatment. In the absence of structural and functional information, we modeled LdAI and validated its solution structure through small angle X-ray scattering (SAXS) analysis. We identified its specific inhibitors through ligand and structure-based approach and characterized their effects on enzymatic properties (Km, Vmax, Kcat) of LdAI. We show that in presence of two of the inhibitors L1 and L2, the survival of L. donovani is compromised whereas overexpression of LdAI in these cells restores viability. Taken together, our results conclusively prove that LdAI is a crucial metabolic enzyme conferring early counter measure against AmB treatment by Leishmania.


Assuntos
Anfotericina B/farmacologia , Asparaginase/química , Asparaginase/efeitos dos fármacos , Resistência a Medicamentos/genética , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/enzimologia , Antiprotozoários/farmacologia , Asparaginase/metabolismo , Concentração Inibidora 50 , Cinética , Leishmania donovani/genética , Leishmaniose Visceral/parasitologia , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Moleculares , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA