Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
EMBO Rep ; 25(2): 593-615, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228788

RESUMO

Many physiological osteocalcin-regulated functions are affected in adult offspring of mothers experiencing unhealthy pregnancy. Furthermore, osteocalcin signaling during gestation influences cognition and adrenal steroidogenesis in adult mice. Together these observations suggest that osteocalcin may broadly function during pregnancy to determine organismal homeostasis in adult mammals. To test this hypothesis, we analyzed in unchallenged wildtype and Osteocalcin-deficient, newborn and adult mice of various genotypes and origin maintained on different genetic backgrounds, the functions of osteocalcin in the pancreas, liver and testes and their molecular underpinnings. This analysis revealed that providing mothers are Osteocalcin-deficient, Osteocalcin haploinsufficiency in embryos hampers insulin secretion, liver gluconeogenesis, glucose homeostasis, testes steroidogenesis in adult offspring; inhibits cell proliferation in developing pancreatic islets and testes; and disrupts distinct programs of gene expression in these organs and in the brain. This study indicates that osteocalcin exerts dominant functions in most organs it influences. Furthermore, through their synergistic regulation of multiple physiological functions, osteocalcin of maternal and embryonic origins contributes to the establishment and maintenance of organismal homeostasis in newborn and adult offspring.


Assuntos
Glicemia , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Camundongos , Gravidez , Glicemia/análise , Glicemia/metabolismo , Homeostase , Insulina/metabolismo , Secreção de Insulina , Mamíferos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645714

RESUMO

Many physiological functions regulated by osteocalcin are affected in adult offspring of mothers experiencing an unhealthy pregnancy. Furthermore, osteocalcin signaling during gestation influences cognition and adrenal steroidogenesis in adult mice. Together these observations suggest that osteocalcin functions during pregnancy may be a broader determinant of organismal homeostasis in adult mammals than previously thought. To test this hypothesis, we analyzed in unchallenged wildtype and Osteocalcin -deficient, newborn, and adult mice of various genotypes and origin, and that were maintained on different genetic backgrounds, the functions of osteocalcin in the pancreas, liver and testes and their molecular underpinnings. This analysis revealed that providing mothers are themselves Osteocalcin -deficient, Osteocalcin haploinsufficiency in embryos hampers insulin secretion, liver gluconeogenesis, glucose homeostasis, testes steroidogenesis in adult offspring; inhibits cell proliferation in developing pancreatic islets and testes; and disrupts distinct programs of gene expression in these organs and in the brain. This study indicates that through their synergistic regulation of multiple physiological functions, osteocalcin ofmaternal and embryonic origins contributes to the establishment and maintenance of organismal homeostasis in newborn and adult offspring.

3.
J Alzheimers Dis ; 95(3): 995-1011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638446

RESUMO

BACKGROUND: Cognitive decline is a common consequence of COVID-19, and studies suggest a link between COVID-19 and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. OBJECTIVE: To understand the potential molecular mechanisms underlying the association between COVID-19 and AD development, and identify the potential genetic targets for pharmaceutical approaches to reduce the risk or delay the development of COVID-19-related neurological pathologies. METHODS: We analyzed transcriptome datasets of 638 brain samples using a novel Robust Rank Aggregation method, followed by functional enrichment, protein-protein, hub genes, gene-miRNA, and gene-transcription factor (TF) interaction analyses to identify molecular markers altered in AD and COVID-19 infected brains. RESULTS: Our analyses of frontal cortex from COVID-19 and AD patients identified commonly altered genes, miRNAs and TFs. Functional enrichment and hub gene analysis of these molecular changes revealed commonly altered pathways, including downregulation of the cyclic adenosine monophosphate (cAMP) signaling and taurine and hypotaurine metabolism, alongside upregulation of neuroinflammatory pathways. Furthermore, gene-miRNA and gene-TF network analyses provided potential up- and downstream regulators of identified pathways. CONCLUSION: We found that downregulation of cAMP signaling pathway, taurine metabolisms, and upregulation of neuroinflammatory related pathways are commonly altered in AD and COVID-19 pathogenesis, and may make COVID-19 patients more susceptible to cognitive decline and AD. We also identified genetic targets, regulating these pathways that can be targeted pharmaceutically to reduce the risk or delay the development of COVID-19-related neurological pathologies and AD.


Assuntos
Doença de Alzheimer , COVID-19 , MicroRNAs , Humanos , Doença de Alzheimer/patologia , Perfilação da Expressão Gênica , COVID-19/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Desenvolvimento de Medicamentos , Taurina
4.
bioRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37398415

RESUMO

Cognitive decline has been reported as a common consequence of COVID-19, and studies have suggested a link between COVID-19 infection and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. To shed light on this link, we conducted an integrated genomic analysis using a novel Robust Rank Aggregation method to identify common transcriptional signatures of the frontal cortex, a critical area for cognitive function, between individuals with AD and COVID-19. We then performed various analyses, including the KEGG pathway, GO ontology, protein-protein interaction, hub gene, gene-miRNA, and gene-transcription factor interaction analyses to identify molecular components of biological pathways that are associated with AD in the brain also show similar changes in severe COVID-19. Our findings revealed the molecular mechanisms underpinning the association between COVID-19 infection and AD development and identified several genes, miRNAs, and TFs that may be targeted for therapeutic purposes. However, further research is needed to investigate the diagnostic and therapeutic applications of these findings.

5.
J Family Med Prim Care ; 11(8): 4705-4710, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36352979

RESUMO

Background: Smoking and chewing tobacco carry significant risks for the development of oral cancer and premalignant lesions. The present study was conducted to find the prevalence of tobacco-related habits in Hazaribagh population and its association with oral mucosal lesion. Methodology: The present study was carried out on patients who visited the Department of Oral Medicine And Radiology, Hazaribagh College of Dental Sciences And Hospital. A total of 5,000 subjects were screened for tobacco-related habits and associated mucosal changes. Detailed clinical history about tobacco-related habits was obtained. Oral mucosal lesions were screened using the WHO format for diagnosis of oral lesions. The findings were tabulated and analyzed statistically. Results: Of the 5,000 subjects enrolled for the study, 1,085 (21.7%) used tobacco in some forms. Habit of smoking tobacco was present among 273 (25.2%) and using smokeless tobacco among 811 (74.7%) individuals. Tobacco pouch keratosis (46.1%) was found to be most common lesion, followed by oral submucous fibrosis (OSMF) (16.1%), lichenoid reaction (14.1%), smokers palate/melanosis (12.2%), leukoplakia (7.2%), erythroplakia (2.3%), and oral cancer in (2%). Conclusion: The results provide insight into prevalent tobacco habits and associated oral mucosal lesions in Hazaribagh population. These may act as baseline data for the formulation of preventive programs and help future studies explore the prevalence of tobacco-associated lesions in vulnerable populations. Current knowledge, including findings from the present study, about the prevalence of tobacco use and various oral lesions associated with it may help primary health care physicians to promote among patients visiting them the awareness about the adverse effects of tobacco consumption and treatment options available for tobacco-related lesions at the early stage.

6.
Int J Mach Learn Cybern ; 13(12): 4013-4032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164557

RESUMO

The classical automata, fuzzy finite automata, and rough finite state automata are some formal models of computing used to perform the task of computation and are considered to be the input device. These computational models are valid only for fixed input alphabets for which they are defined and, therefore, are less user-friendly and have limited applications. The semantic computing techniques provide a way to redefine them to improve their scope and applicability. In this paper, the concept of semantically equivalent concepts and semantically related concepts in information about real-world applications datasets are used to introduce and study two new formal models of computations with semantic computing (SC), namely, a rough finite-state automaton for SC and a fuzzy finite rough automaton for SC as extensions of rough finite-state automaton and fuzzy finite-state automaton, respectively, in two different ways. The traditional rough finite-state automata can not deal with situations when external alphabet or semantically equivalent concepts are given as inputs. The proposed rough finite-state automaton for SC can handle such situations and accept such inputs and is shown to have successful real-world applications. Similarly, a fuzzy finite rough automaton corresponding to a fuzzy automaton is also failed to process input alphabet different from their input alphabet, the proposed fuzzy finite rough automaton for SC corresponding to a given fuzzy finite automaton is capable of processing semantically related input, and external input alphabet information from the dataset obtained by real-world applications and provide better user experience and applicability as compared to classical fuzzy finite rough automaton.

7.
J Clin Invest ; 132(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34905510

RESUMO

Through their ability to regulate gene expression in most organs, glucocorticoid (GC) hormones influence numerous physiological processes and are therefore key regulators of organismal homeostasis. In bone, GC hormones inhibit expression of the hormone Osteocalcin for poorly understood reasons. Here, we show that in a classical endocrine feedback loop, osteocalcin in return enhanced the biosynthesis of GC as well as mineralocorticoid hormones (adrenal steroidogenesis) in rodents and primates. Conversely, inactivation of osteocalcin signaling in adrenal glands significantly impaired adrenal growth and steroidogenesis in mice. Embryo-made osteocalcin was necessary for normal Sf1 expression in fetal adrenal cells and adrenal cell steroidogenic differentiation and therefore determined the number of steroidogenic cells present in the adrenal glands of adult animals. Embryonic, not postnatal, osteocalcin also governed adrenal growth, adrenal steroidogenesis, blood pressure, electrolyte equilibrium, and the rise in circulating corticosterone levels during the acute stress response in adult offspring. This osteocalcin-dependent regulation of adrenal development and steroidogenesis occurred even in the absence of a functional hypothalamus/pituitary/adrenal axis and explains why osteocalcin administration during pregnancy promoted adrenal growth and steroidogenesis and improved the survival of adrenocorticotropic hormone signaling-deficient animals. This study reveals that a bone-derived embryonic hormone influences lifelong adrenal functions and organismal homeostasis in the mouse.


Assuntos
Glândulas Suprarrenais/embriologia , Homeostase , Sistema Hipotálamo-Hipofisário/embriologia , Osteocalcina/metabolismo , Sistema Hipófise-Suprarrenal/embriologia , Transdução de Sinais , Animais , Feminino , Glucocorticoides/genética , Glucocorticoides/metabolismo , Macaca mulatta , Camundongos , Camundongos Knockout , Osteocalcina/genética
8.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R984-R993, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33759575

RESUMO

Vitamin B12 deficiency has been shown to affect bone mass in rodents and negatively impact bone formation in humans. In this study using mouse models, we define the effect of B12 supplementation in the wild-type mother and B12 deficiency in a mouse genetic model (Gif-/- mice) during gestation on bone and muscle architecture and mechanical properties in the offspring. Analysis of bones from 4-wk-old offspring of the wild-type mother following vehicle or B12 supplementation during gestation (from embryonic day 0.5 to 20.5) showed an increase in bone mass caused by an isolated increase in bone formation in the B12-supplemented group compared with vehicle controls. Analysis of the effect of B12 deficiency in the mother in a mouse genetic model (Gif-/- mice) on the long bone architecture of the offspring showed a compromised cortical and trabecular bone mass, which was completely prevented by a single injection of B12 in the B12-deficient Gif-/- mothers. Biomechanical analysis of long bones of the offspring born from B12-supplemented wild-type mothers showed an increase in bone strength, and conversely, offspring born from B12-deficient Gif-/- mothers revealed a compromised bone strength, which could be rescued by a single injection of B12 in the B12-deficient Gif-/- mother. Muscle structure and function analysis however revealed no significant effect on muscle mass, structure, and grip strength of B12 deficiency or supplementation in Gif-/- mice compared with littermate controls. Together, these results demonstrate the beneficial effect of maternally derived B12 in the regulation of bone structure and function in the offspring.


Assuntos
Osso e Ossos/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Vitamina B 12/metabolismo , Animais , Densidade Óssea/fisiologia , Suplementos Nutricionais , Feminino , Camundongos , Gravidez , Vitaminas/metabolismo , Desmame
9.
J Clin Invest ; 130(6): 2888-2902, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32078586

RESUMO

Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin 6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exercise nor the means by which this cytokine enhances exercise capacity has been formally established yet. Here we show through genetic means that the majority of circulating IL-6 detectable during exercise originates from muscle and that to increase exercise capacity, IL-6 must signal in osteoblasts to favor osteoclast differentiation and the release of bioactive osteocalcin in the general circulation. This explains why mice lacking the IL-6 receptor only in osteoblasts exhibit a deficit in exercise capacity of similar severity to the one seen in mice lacking muscle-derived IL-6 (mIL-6), and why this deficit is correctable by osteocalcin but not by IL-6. Furthermore, in agreement with the notion that IL-6 acts through osteocalcin, we demonstrate that mIL-6 promotes nutrient uptake and catabolism into myofibers during exercise in an osteocalcin-dependent manner. Finally, we show that the crosstalk between osteocalcin and IL-6 is conserved between rodents and humans. This study provides evidence that a muscle-bone-muscle endocrine axis is necessary to increase muscle function during exercise in rodents and humans.


Assuntos
Interleucina-6/imunologia , Músculo Esquelético/imunologia , Osteoblastos/imunologia , Transdução de Sinais/imunologia , Animais , Feminino , Interleucina-6/genética , Macaca mulatta , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
10.
Nature ; 568(7753): 541-545, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971820

RESUMO

Osteoclasts are multinucleated giant cells that resorb bone, ensuring development and continuous remodelling of the skeleton and the bone marrow haematopoietic niche. Defective osteoclast activity leads to osteopetrosis and bone marrow failure1-9, whereas excess activity can contribute to bone loss and osteoporosis10. Osteopetrosis can be partially treated by bone marrow transplantation in humans and mice11-18, consistent with a haematopoietic origin of osteoclasts13,16,19 and studies that suggest that they develop by fusion of monocytic precursors derived from haematopoietic stem cells in the presence of CSF1 and RANK ligand1,20. However, the developmental origin and lifespan of osteoclasts, and the mechanisms that ensure maintenance of osteoclast function throughout life in vivo remain largely unexplored. Here we report that osteoclasts that colonize fetal ossification centres originate from embryonic erythro-myeloid progenitors21,22. These erythro-myeloid progenitor-derived osteoclasts are required for normal bone development and tooth eruption. Yet, timely transfusion of haematopoietic-stem-cell-derived monocytic cells in newborn mice is sufficient to rescue bone development in early-onset autosomal recessive osteopetrosis. We also found that the postnatal maintenance of osteoclasts, bone mass and the bone marrow cavity involve iterative fusion of circulating blood monocytic cells with long-lived osteoclast syncytia. As a consequence, parabiosis or transfusion of monocytic cells results in long-term gene transfer in osteoclasts in the absence of haematopoietic-stem-cell chimerism, and can rescue an adult-onset osteopetrotic phenotype caused by cathepsin K deficiency23,24. In sum, our results identify the developmental origin of osteoclasts and a mechanism that controls their maintenance in bones after birth. These data suggest strategies to rescue osteoclast deficiency in osteopetrosis and to modulate osteoclast activity in vivo.


Assuntos
Células-Tronco Hematopoéticas/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteopetrose/genética , Animais , Animais Recém-Nascidos , Desenvolvimento Ósseo , Feminino , Genes Recessivos , Masculino , Camundongos , Osteopetrose/patologia , Erupção Dentária
11.
Bone ; 122: 123-135, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30797058

RESUMO

Osteoporosis is the most common metabolic bone disease, which poses an immense socio-economic burden on the society. Human calcitonin, though safe, is not considered as a therapeutic option because of its high tendency to self-associate to form amyloid fibrils thereby affecting its potency. To circumvent this issue we harnessed the inherent capacity of aggregation and developed an assemblage of human calcitonin monomers, [Supramolecular Calcitonin Assembly (SCAI)], which releases biologically active calcitonin monomers in a sustained manner for a period of at least three weeks. AFM and FT-IR analysis showed that SCA-I is amorphous aggregates of calcitonin monomers. Both SCA-I and monomer released from it demonstrated superior anti-osteoclast activity and proteolytic stability in-vitro. SCA-I upon single injection significantly improved bone formation markers and reduced bone resorption markers in ovariectomized (OVX) rat model of postmenopausal osteoporosis. Micro-CT analysis revealed that calcitonin released from SCA-I exhibits its beneficial effect on cortical bone more profoundly compared to trabecular bone. This study demonstrates that SCA-I is more effective compared to the human calcitonin monomers on osteoclasts and has site-specific effect on bone in a model of post-menopausal osteoporosis. This approach opens up an innovative way to use and study the function of human calcitonin.


Assuntos
Remodelação Óssea , Calcitonina/metabolismo , Animais , Fenômenos Biofísicos , Reabsorção Óssea/sangue , Reabsorção Óssea/patologia , Modelos Animais de Doenças , Feminino , Fêmur/diagnóstico por imagem , Humanos , Camundongos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoclastos/metabolismo , Pós-Menopausa/sangue , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Microtomografia por Raio-X
12.
Nat Commun ; 10(1): 158, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622275

RESUMO

The originally published version of this Article contained an error in Figure 2. In panel g, the image of brown adipose tissue from SCD-fed Tph1 GKO mice (top-right) was inadvertently replaced with the equivalent image of SCD-fed WT mice (top-left) during assembly of the figure. This error has now corrected in both the PDF and HTML versions of the Article.

13.
Mol Metab ; 20: 38-50, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553769

RESUMO

OBJECTIVE: Sympathetic nervous system and immune cell interactions play key roles in the regulation of metabolism. For example, recent convergent studies have shown that macrophages regulate obesity through brown adipose tissue (BAT) activation and beiging of white adipose tissue (WAT) via effects upon local catecholamine availability. However, these studies have raised issues about the underlying mechanisms involved including questions regarding the production of catecholamines by macrophages, the role of macrophage polarization state and the underlying intracellular signaling pathways in macrophages that might mediate these effects. METHODS: To address such issues we generated mice lacking Irs2, which mediates the effects of insulin and interleukin 4, specifically in LyzM expressing cells (Irs2LyzM-/- mice). RESULTS: These animals displayed obesity resistance and preservation of glucose homeostasis on high fat diet feeding due to increased energy expenditure via enhanced BAT activity and WAT beiging. Macrophages per se did not produce catecholamines but Irs2LyzM-/- mice displayed increased sympathetic nerve density and catecholamine availability in adipose tissue. Irs2-deficient macrophages displayed an anti-inflammatory transcriptional profile and alterations in genes involved in scavenging catecholamines and supporting increased sympathetic innervation. CONCLUSIONS: Our studies identify a critical macrophage signaling pathway involved in the regulation of adipose tissue sympathetic nerve function that, in turn, mediates key neuroimmune effects upon systemic metabolism. The insights gained may open therapeutic opportunities for the treatment of obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Células Precursoras de Monócitos e Macrófagos/metabolismo , Obesidade/genética , Sistema Nervoso Simpático/metabolismo , Tecido Adiposo Marrom/fisiologia , Animais , Catecolaminas/metabolismo , Células Cultivadas , Metabolismo Energético , Deleção de Genes , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Sistema Nervoso Simpático/fisiologia
14.
Sci Rep ; 8(1): 17642, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518775

RESUMO

Recent studies on tissue-autonomous serotonin (5-hydroxytryptamine [5-HT]) function have identified new roles for 5-HT in peripheral organs. Most of these studies were performed by crossing mice carrying the Tph1tm1Kry allele with tissue specific Cre mice. In the present study, we found that 5-HT production was not completely abolished in Tph1tm1Kry KO mice. The residual 5-HT production in Tph1tm1Kry KO mice is attributed to the expression of a truncated form of TPH1 containing the catalytic domain. Hence, in an effort to obtain mice with a Tph1 null phenotype, we generated mice harboring a new Tph1 floxed allele, Tph1tm1c, targeting exons 5 and 6 which encode the catalytic domain of TPH1. By crossing the new Tph1 floxed mice with villin-Cre or insulin-Cre mice, we observed near-complete ablation of 5-HT production in the intestine and ß cells. In conclusion, this improved Tph1 floxed mouse model will serve as useful and accurate tool for analyzing peripheral 5-HT system.


Assuntos
Técnicas de Inativação de Genes/métodos , Triptofano Hidroxilase/genética , Animais , Deleção de Genes , Células Secretoras de Insulina/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo
15.
Nat Commun ; 9(1): 4824, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446669

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is increasing in worldwide prevalence, closely tracking the obesity epidemic, but specific pharmaceutical treatments for NAFLD are lacking. Defining the key molecular pathways underlying the pathogenesis of NAFLD is essential for developing new drugs. Here we demonstrate that inhibition of gut-derived serotonin synthesis ameliorates hepatic steatosis through a reduction in liver serotonin receptor 2A (HTR2A) signaling. Local serotonin concentrations in the portal blood, which can directly travel to and affect the liver, are selectively increased by high-fat diet (HFD) feeding in mice. Both gut-specific Tph1 knockout mice and liver-specific Htr2a knockout mice are resistant to HFD-induced hepatic steatosis, without affecting systemic energy homeostasis. Moreover, selective HTR2A antagonist treatment prevents HFD-induced hepatic steatosis. Thus, the gut TPH1-liver HTR2A axis shows promise as a drug target to ameliorate NAFLD with minimal systemic metabolic effects.


Assuntos
Mucosa Intestinal/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Receptor 5-HT2A de Serotonina/genética , Serotonina/metabolismo , Triptofano Hidroxilase/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Hipolipemiantes/farmacologia , Resistência à Insulina , Mucosa Intestinal/patologia , Metabolismo dos Lipídeos , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptor 5-HT2A de Serotonina/deficiência , Antagonistas da Serotonina/farmacologia , Transdução de Sinais , Succinatos/farmacologia , Triptofano Hidroxilase/deficiência
16.
Sci Rep ; 7(1): 9902, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851986

RESUMO

Children suffering from autism have been reported to have low bone mineral density and increased risk for fracture, yet the cellular origin of the bone phenotype remains unknown. Here we have utilized a mouse model of autism that duplicates 6.3 Mb region of chromosome 7 (Dp/+) corresponding to a region of chromosome 15q11-13, duplication of which is recurrent in humans to characterize the bone phenotype. Paternally inherited Dp/+ (patDp/+) mice showed expected increases in the gene expression in bone, normal postnatal growth and body weight acquisition compared to the littermate controls. Four weeks-old patDp/+ mice develop a low bone mass phenotype in the appendicular but not the axial skeleton compared to the littermate controls. This low bone mass in the mutant mice was secondary to a decrease in the number of osteoblasts and bone formation rate while the osteoclasts remained relatively unaffected. Further in vitro cell culture experiments and gene expression analysis revealed a major defect in the proliferation, differentiation and mineralization abilities of patDp/+ osteoblasts while osteoclast differentiation remained unchanged compared to controls. This study therefore characterizes the structural and cellular bone phenotype in a mouse model of autism that can be further utilized to investigate therapeutic avenues to treat bone fractures in children with autism.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/patologia , Osso e Ossos/patologia , Duplicação Cromossômica , Cromossomos Humanos Par 15 , Animais , Transtorno Autístico/metabolismo , Osso e Ossos/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Osteoblastos/metabolismo , Fenótipo , Microtomografia por Raio-X
17.
J Pineal Res ; 63(2)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28512916

RESUMO

Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that catalyzes the first step in the melatonin biosynthesis lead to a decrease in melatonin levels and a low bone mass due to an isolated decrease in bone formation while bone resorption parameters remained unaffected. Skeletal analysis of the mice deficient in MT1 or MT2 melatonin receptors showed a low bone mass in MT2-/- mice while MT1-/- mice had a normal bone mass compared to the WT mice. This low bone mass in the MT2-/- mice was due to an isolated decrease in osteoblast numbers and bone formation. In vitro assays of the osteoblast cultures derived from the MT1-/- and MT2-/- mice showed a cell intrinsic defect in the proliferation, differentiation and mineralization abilities of MT2-/- osteoblasts compared to WT counterparts, and the mutant cells did not respond to melatonin addition. Finally, we demonstrate that daily oral administration of melatonin can increase bone accrual during growth and can cure ovariectomy-induced structural and functional degeneration of bone by specifically increasing bone formation. By identifying pineal-derived melatonin as a regulator of bone mass through MT2 receptors, this study expands the role played by tryptophan derivatives in the regulation of bone mass and underscores its therapeutic relevance in postmenopausal osteoporosis.


Assuntos
Osso e Ossos/metabolismo , Melatonina/farmacologia , Osteoblastos/metabolismo , Glândula Pineal/metabolismo , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Osso e Ossos/patologia , Calcificação Fisiológica/efeitos dos fármacos , Feminino , Humanos , Melatonina/metabolismo , Camundongos , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/patologia , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Glândula Pineal/patologia , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Transdução de Sinais/genética
18.
Nat Commun ; 6: 6794, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25864946

RESUMO

Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.


Assuntos
Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Homeostase/genética , Obesidade/metabolismo , Serotonina/metabolismo , Células 3T3-L1 , Adipócitos Marrons/metabolismo , Adipócitos Marrons/patologia , Adipócitos Brancos/metabolismo , Adipócitos Brancos/patologia , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Animais , Dieta Hiperlipídica , Metabolismo Energético/genética , Epididimo/metabolismo , Epididimo/patologia , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/patologia , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptores 5-HT3 de Serotonina/deficiência , Receptores 5-HT3 de Serotonina/genética , Termogênese/genética , Triptofano Hidroxilase/deficiência , Triptofano Hidroxilase/genética
19.
Endocrinology ; 156(2): 444-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25426873

RESUMO

The physiological role of serotonin, or 5-hydroxytryptamine (5-HT), in pancreatic ß-cell function was previously elucidated using a pregnant mouse model. During pregnancy, 5-HT increases ß-cell proliferation and glucose-stimulated insulin secretion (GSIS) through the Gαq-coupled 5-HT2b receptor (Htr2b) and the 5-HT3 receptor (Htr3), a ligand-gated cation channel, respectively. However, the role of 5-HT in ß-cell function in an insulin-resistant state has yet to be elucidated. Here, we characterized the metabolic phenotypes of ß-cell-specific Htr2b(-/-) (Htr2b ßKO), Htr3a(-/-) (Htr3a knock-out [KO]), and ß-cell-specific tryptophan hydroxylase 1 (Tph1)(-/-) (Tph1 ßKO) mice on a high-fat diet (HFD). Htr2b ßKO, Htr3a KO, and Tph1 ßKO mice exhibited normal glucose tolerance on a standard chow diet. After 6 weeks on an HFD, beginning at 4 weeks of age, both Htr3a KO and Tph1 ßKO mice developed glucose intolerance, but Htr2b ßKO mice remained normoglycemic. Pancreas perfusion assays revealed defective first-phase insulin secretion in Htr3a KO mice. GSIS was impaired in islets isolated from HFD-fed Htr3a KO and Tph1 ßKO mice, and 5-HT treatment improved insulin secretion from Tph1 ßKO islets but not from Htr3a KO islets. Tph1 and Htr3a gene expression in pancreatic islets was not affected by an HFD, and immunostaining could not detect 5-HT in pancreatic islets from mice fed an HFD. Taken together, these results demonstrate that basal 5-HT levels in ß-cells play a role in GSIS through Htr3, which becomes more evident in a diet-induced insulin-resistant state.


Assuntos
Resistência à Insulina , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/fisiologia , Animais , Dieta Hiperlipídica , Secreção de Insulina , Masculino , Camundongos Knockout , Receptores de Serotonina/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
20.
Best Pract Res Clin Endocrinol Metab ; 28(5): 713-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25256766

RESUMO

Bones are structures in vertebrates that provide support to organs, protect soft organs, and give them shape and defined features, functions that are essential for their survival. To perform these functions, bones are constantly renewed throughout life. The process through which bones are renewed is known as bone remodeling, an energy demanding process sensitive to changes in energy homeostasis of the organism. A close interplay takes place between the diversity of nutritional cues and metabolic signals with different elements of the hypothalamic circuits to co-ordinate energy metabolism with the regulation of bone mass. In this review, we focus on how mouse and human genetics have elucidated the roles of hormonal signals and neural circuits that originate in, or impinge on, the hypothalamus in the regulation of bone mass. This will help to understand the mechanisms whereby regulation of bone is gated and dynamically regulated by the hypothalamus.


Assuntos
Osso e Ossos/metabolismo , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Animais , Tronco Encefálico/metabolismo , Homeostase/fisiologia , Humanos , Leptina/metabolismo , Neuropeptídeo Y/metabolismo , Sistema Nervoso Simpático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA