RESUMO
This study investigates the adsorption of pollutants with different chemical structures; organic Naphtol Green B (NGB) dye and copper on a nanocomposite material with a hexagonal structure of the SBA-15 type. This research is divided into two main parts: the first carries out the synthesis of SBA-15 (Santa Barbra Amourphous) and its derivatives phases functionalized by 3-aminopropyl-triethoxylane (APTES) and calcined at 823 K. The second part presents the influence of the adsorption conditions on the adsorption efficiency of NGB dye and copper. High-resolution X-ray diffractogram (XRD) showed three distinct peaks characteristic of highly ordered mesoporous material. Nitrogen adsorption-desorption isotherm of SBA-15 at 77 K° is type IV typical of mesoporous materials. In addition, Fourier transform infrared spectroscopy (FT-IR) was also used in the characterization before and after the adsorption of the selected pollutants. At optimal conditions of pH 5.2, initial concentration of 50 mg/L, adsorbent dosage of 20 mg, and at adsorption time of 90 min the maximum removal of pollutants reached 76% and the adsorption capacity was 227.25 mg/g for NGB dye and 221.006 mg/g for copper. Furthermore, the adsorption kinetics followed the pseudo-second-order model, indicating that chemisorption was the dominant mechanism and the Sips isotherm model best described the adsorption data. Our research demonstrates that the SBA-15 material after modification is an effective adsorbent for removing effluents regardless of their different chemical structure (organic and inorganic).