RESUMO
BACKGROUND: Epilactose, a potential prebiotics, was derived from lactose through enzymatic catalysis. However, production and purification of epilactose are currently difficult due to powerless enzymes and inefficient downstream processing steps. RESULTS: The encoding gene of cellobiose 2-epimerase (CE) from Caldicellulosiruptor sp. Rt8.B8 was cloned and expressed in Escherichia coli BL21(DE3). The enzyme was purified and it was suitable for industrial production of epilactose from lactose without by-products, because of high kcat (197.6 s-1 ) and preferable thermostability. The Rt8-CE gene was further expressed in the Bacillus subtilis strain. We successfully produced epilactose from 700 g L-1 lactose in 30.4% yield by using the recombinant Bacillus subtilis whole cells. By screening of a ß-galactosidase from Bacillus stearothermophilus (BsGal), a process for separating epilactose and lactose was established, which showed a purity of over 95% in a total yield of 69.2%. In addition, a mixed rare sugar syrup composed of epilactose and d-tagatose was successfully produced from lactose through the co-expression of l-arabinose isomerase and ß-galactosidase. CONCLUSION: Our study shed light on the efficient production of epilactose using a food-grade host expressing a novel CE enzyme. Moreover, an efficient and low-cost process was attempted to obtain high purity epilactose. In order to improve the utilization of raw materials, the production process of mixed syrup containing epilactose and d-tagatose with prebiotic properties produced from lactose was also established for the first time. © 2021 Society of Chemical Industry.
Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Caldicellulosiruptor/enzimologia , Celobiose/metabolismo , Dissacarídeos/biossíntese , Racemases e Epimerases/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caldicellulosiruptor/genética , Estabilidade Enzimática , Expressão Gênica , Temperatura Alta , Lactose/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
The Phytoreovirus rice dwarf virus (RDV) has a complex nucleocapsid architecture composed of multiple proteins and RNAs. However, specific RNA-protein and protein-protein interactions involved in virion packaging have not been entirely elucidated. In order to define mechanisms governing RDV particle assembly, interactions between individual components were analyzed both in vivo and in vitro. The P7 core protein binds specifically and with high affinity to all 12 genomic RDV dsRNAs. P1, a putative RNA polymerase, P5, a putative guanyltransferase and P7 are encapsidated within the virion and also bind viral transcripts based upon in vitro binding assays. P1, P5, P7 and genomic dsRNAs were lacking in empty particles purified from infected tissues that also yielded fractions containing intact, infectious particles. In addition, P7 forms complexes with P1 and P3, a core capsid protein, in viral particles. These results indicate the possibility that core proteins and dsRNAs interact as one unit suggesting a mechanism for assortment of viral RNAs and subsequent packaging into core particles.