Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Rep (Hoboken) ; 7(6): e2114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38886335

RESUMO

BACKGROUND: It has been reported that long non-coding RNAs (lncRNAs) can play important roles in a variety of biological processes and cancer regulatory networks, including breast cancer. AIMS: This study aimed to identify a novel upregulated lncRNA in breast cancer and its associated gene using bioinformatics analysis, and then evaluate their potential roles in breast cancer. METHODS AND RESULTS: Extensive in silico studies were performed using various bioinformatics databases and tools to identify a potential upregulated breast cancer-associated lncRNA and its co-expressed gene, and to predict their potential roles, functions, and interactions. The expression level of MRPS30-DT lncRNA and MRPS30 was assessed in both BC tissues and cell lines using qRT-PCR technology. MRPS30-DT lncRNA and MRPS30 were selected as target genes using bioinformatics analysis. We found that MRPS30-DT and MRPS30 were significantly overexpressed in BC tissues compared with normal tissues. Also, MRPS30 showed upregulation in all three BC cell lines compared with HDF. On the other hand, MRPS30-DT significantly increased in MDA-MB-231 compared with HDF. While the expression of MRPS30-DT was significantly dropped in the resistance cell line MCF/MX compared to HDF and MCF7. Moreover, bioinformatics analysis suggested that MRPS30-DT and MRPS30 may play a potential role in BC through their involvement in some cancer signaling pathways and processes, as well as through their interaction with TFs, genes, miRNAs, and proteins related to carcinogenesis. CONCLUSIONS: Overall, our findings showed the dysregulation of MRPS30-DT lncRNA and MRPS30 may provide clues for exploring new therapeutic targets or molecular biomarkers in BC.


Assuntos
Neoplasias da Mama , Biologia Computacional , Simulação por Computador , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Biologia Computacional/métodos , Redes Reguladoras de Genes , Células MCF-7 , RNA Longo não Codificante/genética , Regulação para Cima
2.
Anticancer Agents Med Chem ; 24(14): 1056-1062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685807

RESUMO

INTRODUCTION: Green synthesis offers a fast, simple, and economical method for producing metallic nanoparticles.The basis of this method is to obtain nanoparticles using natural materials, such as plants, fungi, and bacteria, instead of harmful and expensive chemical-reducing agents. In this study, CeO2NPs were produced using Alhagi maurorum extract, and their anticancer and antibacterial activities were evaluated. METHODS: Alhagi maurorum extract was prepared according to a previously described protocol, and CeO2NPs were synthesized from the salt of this extract. The resulting nanoparticles were characterized using Transmission electron microscopy (TEM), scanning electron microscope (SEM), and X-ray diffraction (XRD) techniques. The antibacterial and cytotoxic effects of the nanoparticles were measured by MIC, MBC, and MTT assays, respectively. The results were analyzed using one-way analysis of variance (ANOVA) using Prism software. RESULTS: The MTT assay on breast cancer cell lines showed that the cytotoxic effect of CeO2NPs on cell lines was concentration-dependent. In addition, this nanoparticle was more effective against Gram-positive bacteria. CONCLUSION: These nanoparticles can be used as cancer drug delivery systems with specific targeting at low concentrations in addition to anticancer treatments. It can also have biological and medicinal applications, such as natural food preservation and wound dressing.


Assuntos
Antibacterianos , Neoplasias da Mama , Cério , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Testes de Sensibilidade Microbiana , Extratos Vegetais , Folhas de Planta , Humanos , Cério/química , Cério/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Nanopartículas/química , Nanopartículas Metálicas/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/isolamento & purificação , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Feminino , Bactérias Gram-Positivas/efeitos dos fármacos , Linhagem Celular Tumoral , Tamanho da Partícula
3.
Mol Biol Rep ; 51(1): 427, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498238

RESUMO

BACKGROUND: Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS: The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS: Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS: Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ácido Valproico/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Supressora de Tumor p53 , Resistência a Múltiplos Medicamentos/genética , Apoptose , Linhagem Celular Tumoral , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacologia , Proteínas de Transporte Vesicular/uso terapêutico
4.
Epigenomics ; 16(5): 277-292, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356395

RESUMO

Background: The objective of this research was to determine whether HDAC2 function is associated with gastric cancer progression. Methods: HDAC2 was knocked out in EPG85.257 cells using CRISPR/Cas9 and tumorigenesis pathways were evaluated. Results: Cell proliferation, colony formation, wound healing and transwell invasion were inhibited in ΔHDAC2:EPG85.257 cells. Quantitative analyses revealed a significant downregulation of MMP1, p53, Bax, MAPK1, MAPK3, pro-Caspase3, ERK1/2, p-ERK1/2, AKT1/2/3, p-AKT1/2/3, p-NF-κB (p65), Twist, Snail and p-FAK transcripts/proteins, while SIRT1, PTEN, p21 and Caspase3 were upregulated in ΔHDAC2:EPG85.257 cells. Conclusion: These results indicated that HDAC2 enhanced migration, colony formation and transmigration ability. HDAC2 inhibition may improve gastric cancer chemotherapy pathways.


DNA changes are the main causes of cancer. Therefore, finding easy ways to manipulate and correct DNA changes has been the biggest medical concern in cancer treatment. Researchers have introduced CRISPR/Cas9 as the newest technology for gene editing that precisely and easily changes the genome of any cell. In our study, histone deacetylase-2 was disrupted in gastric cancer cells using CRISPR technology. This modification reduced growth kinetics and invasion of cancer cells. On the other hand, cell death (also called apoptosis) was induced. Sensitization of the cancer cells to chemotherapeutic agents is noticeable in this research. This study needs to uncover more signaling pathways in vitro and in vivo.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Epigênese Genética , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo
5.
Int J Biol Macromol ; 253(Pt 5): 127184, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37797860

RESUMO

Nucleic acids provide a promising therapeutic platform by targeting various cell signaling pathways involved in cancer and genetic disorders. However, maintaining optimal stability during delivery limits their utility. Nucleic acid delivery vehicles are generally categorized into biological and synthetic carriers. Regardless of the efficiency of biological vectors, such as viral vectors, issues related to their immunogenicity and carcinogenesis are very important and vital for clinical applications. On the other hand, synthetic vectors such as lipids or polymers, have been widely used for nucleic acid delivery. Despite their transfection efficiency, low storage stability, targeting inefficiency, and tracking limitations are among the limitations of the clinical application of these vectors. In the past decades, gold nanoparticles with unique properties have been shown to be highly efficient mineral vectors for overcoming these obstacles. In this review, we focus on gold nanoparticle-nucleic acid combinations and highlight their use in the treatment of various types of cancers. Furthermore, by stating the biological applications of these structures, we will discuss their clinical applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/uso terapêutico , Ouro , Nanopartículas Metálicas/uso terapêutico , Transfecção , Nanopartículas/química , Neoplasias/tratamento farmacológico
6.
Sci Rep ; 13(1): 11451, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454152

RESUMO

This study investigated the anticancer effects of compounds extracted from native plants on colon cancer following drug-target-network analysis and molecular docking. Based on the ChEBI database, compounds were identified in medicinal plants and weeds in the Chaharmahal and Bakhtiari provinces of Iran. A drug-target network was constructed based on candidate colon cancer protein targets and selective compounds. Network pharmacology analysis was conducted against the identified compounds and subjected to molecular docking studies. Based on molecular dynamics simulations, the most efficient compounds were evaluated for their anticancer effects. Our study suggests that TREM1, MAPK1, MAPK8, CTSB, MIF, and DPP4 proteins may be targeted by compounds in medicinal plants for their anti-cancer effects. Multiorthoquinone, Liquiritin, Isoliquiritin, Hispaglabridin A, Gibberellin A98, Cyclomulberrin, Cyclomorusin A, and Cudraflavone B are effective anticancer compounds found in targeted medicinal plants and play an important role in the regulation of important pathways in colon cancer. Compounds that inhibit MIF, CTSB, and MAPK8-16 appear to be more effective. Additional in vitro and in vivo experiments will be helpful in validating and optimizing the findings of this study.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Plantas Medicinais , Humanos , Simulação de Acoplamento Molecular , Detecção Precoce de Câncer , Biologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia
7.
Cancer Rep (Hoboken) ; 6(6): e1816, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37166017

RESUMO

BACKGROUND: multidrug resistance (MDR) is One of the foremost challenges in overcoming breast cancer. Various molecular processes are involved in the development of MDR in breast cancer cells, including over expression of ABC transporters such as ABCG2 (BCRP), increase breast cancer stem cells drug resistance, and epithelial mesenchymal transition. AIMS: In the present study, we used bioinformatics and experimental analysis to investigate the role of miR-548 K, in the modulating of ABCG2, in MDR breast cancer cells. METHODS AND RESULTS: In silico inspections introduce 14 microRNAs targeting 3'-UTR region of ABCG2 transcripts, which are probably involved in breast cancer drug resistance. An association was highlighted between miR-548 k with ABC transporter family. The expression level of ABCG2 gene in MCF7-MX cell lines was significantly more than MCF7 cell lines. On the other hand, we increased the expression of miR-548 K in MCF7-MX and MCF7 cell lines through its transfection, which dramatically coincided with decreasion in the ABCG2 transcripts level. Additional studies on patient samples revealed that the expression of ABCG2 showed an increase in ABCG2 level in neoadjuvant chemotherapy drugs resistance (NCDR) patients compared to primary pre-operative chemotherapy drugs response (PCDR) patients. Also, a reduction in the expression of miR-548 K in NCDR patients was revealed. CONCLUSION: The results of our study suggest that miR-548 K may be involved in modulating the expression of ABCG2 in MDR breast cancer cells.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Resistência a Múltiplos Medicamentos/genética , MicroRNAs/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/farmacologia , Expressão Gênica
8.
IUBMB Life ; 75(2): 97-116, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36309967

RESUMO

Breast cancer is the most aggressive and fatal form of cancer among women globally. Although the role of some miRNAs that are often dysregulated in breast cancer has been deciphered, the regulatory function of others still remains unknown. The current study was aimed at determining the biological role and underlying mechanism of miR-548k in breast cancer. In this study, the significant overexpression of miR-548k in breast cancer tissues compared to adjacent normal tissues was confirmed. Also, bioinformatics analysis indicated that PTEN, as a negative regulator of PI3K/AKT signaling pathway, was a potential target of miR-548k, and its expression was downregulated in breast cancer tissues rather than normal tissues. Furthermore, the ectopic increase of miR-548k decreased the expression of PTEN in breast cancer, suggesting that PTEN is one of the potential downstream targets of miR-548k. Besides, functional analysis was conducted to assess the capability of miR-548k to alter apoptosis along with the changed expression levels of miR-548k in breast cancer cells. Based on this investigation, forced increase of miR-548k disrupted programmed cell death in MCF-7 cells. Apart from this, in silico study of miR-548 family supported its association with the main components of PI3K/Akt signaling pathway, opening a prospective research area in cancer therapy. In brief, suppression of PTEN partly mediated by miR-548k diminished apoptosis and promoted cell proliferation through PI3K/Akt pathway in breast cancer, suggesting a novel therapeutic axis, miR-548k/PTEN/ PI3K/Akt, for treatment of breast cancer in the future.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama/genética , Estudos Prospectivos , Transdução de Sinais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
9.
Int J Biol Macromol ; 223(Pt A): 732-754, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36372102

RESUMO

Gastrointestinal cancer (GI) is one of the most serious and health-threatening diseases worldwide. Many countries have encountered an escalating prevalence of shock. Therefore, there is a pressing need to clarify the molecular pathogenesis of these cancers. The use of high-throughput technologies that allow the precise and simultaneous investigation of thousands of genes, proteins, and metabolites is a critical step in disease diagnosis and cure. Recent innovations have provided easy and reliable methods for genome investigation, including TALENs, ZFNs, and the CRISPR/Cas9 (clustered regularly interspaced palindromic repeats system). Among these, CRISPR/Cas9 has been revolutionary tool in genetic research. Recent years were prosperous years for CRISPR by the discovery of novel Cas enzymes, the Nobel Prize, and the development of critical clinical trials. This technology utilizes comprehensive information on genes associated with tumor development, provides high-throughput libraries for tumor therapy by developing screening platforms, and generates rapid tools for cancer therapy. This review discusses the various applications of CRISPR/Cas9 in genome editing, with a particular focus on genome manipulation, including infection-related genes, RNAi targets, pooled library screening for identification of unknown driver mutations, and molecular targets for gastrointestinal cancer modeling. Finally, it provides an overview of CRISPR/Cas9 clinical trials, as well as the challenges associated with its use.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Gastrointestinais , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/terapia
10.
Curr Pharm Des ; 28(29): 2375-2386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927924

RESUMO

Coronavirus disease 2019 (COVID-19) is the result of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding molecular pathogenesis is an essential factor for the allocation of effective preventive measures and the development of targeted therapeutics against COVID-19. The genome of SARS-CoV-2 encodes structural and nonstructural proteins, which can be targets for compounds with potential therapeutic ability. On the other hand, the virus life cycle has stages susceptible to targeting by drug compounds. Many natural antiviral compounds have been studied and evaluated at the cellular and molecular levels with antiviral potential. Meanwhile, many studies over the past few months have shown that plant polysaccharides have a good ability to target proteins and stages of the virus life cycle. In this regard, in this review study, the virus specifications and infectious process and structural and functional components of SARSCoV- 2 will be reviewed, and then the latest studies on the effect of plant compounds with more focus on polysaccharides on viral targets and their inhibitory potential on the infectious process of COVID-19 will be discussed.


Assuntos
Tratamento Farmacológico da COVID-19 , Plantas Medicinais , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Plantas Medicinais/metabolismo , SARS-CoV-2
11.
Mol Biol Rep ; 49(9): 8485-8493, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35767105

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are one of the main factors in cancer development and can alter the activity of proto-oncogenic or tumor suppressor genes. The miR-17-92 cluster, which comprises miR-17, miR-18a, miR-19a/b, miR-20a, and miR-92a, has been identified as a biomarker in a variety of cancer types. Among them, miR-19a/b exerts an oncogenic effect by suppressing tumor suppressor genes, including PTEN and TP53INP1in numerous types of cancers, including NSCLC. An miRNA sponge is an mRNA with multiple repetitive sequences that prevents miRNAs from interacting with their targets, thereby inhibiting their action. METHODS AND RESULTS: In this study, we designed an miR-19a/b sponge plasmid and transfected it into A549 lung cancer cell lines and analyzed its effects on PTEN and TP53INP1 gene expression as the main miR-19a/b target and apoptosis rate in these cell lines. CONCLUSIONS: The findings revealed that miR-19a/b sponge significantly increased PTEN and TP53INP1 mRNA expression. The effect of the sponge on TP53INP1 was much greater than that on PTEN. This is because TP53INP1 is directly (sponge effect) and indirectly (AKT pathway is affected by the P53 gene) affected by this sponge. In addition, compared with the control group, the percentage of primary and secondary apoptosis increased significantly (P value < 0.0001).


Assuntos
Neoplasias Pulmonares , MicroRNAs , Apoptose/genética , Proteínas de Transporte/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Choque Térmico/genética , Humanos , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro
12.
J Cell Physiol ; 235(10): 6887-6895, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32003016

RESUMO

MicroRNAs are key factors for many biological functions. These regulatory molecules affect various gene networks and involve the subsequent signaling pathways. Therefore, disrupting the expression of these molecules is associated with multiple anomalies in the cells and body. One of the most important related abnormalities is the incidence of cancer. Thus, targeting microRNAs (miRNAs) is an effective approach for cancer gene therapy. Various factors are used for this purpose, including the antagomir nucleotide structure. There are some obstacles in the delivery of nucleotide therapeutics to the target cells, however, the use of nanoparticles could partly overcome these defeciencies. On the other hand, targeted delivery of antagomirs using aptamers, reduces nonspecific effects on nontarget cells. Considering the above, in this study, we designed and fabricated a nanocarrier composed of gold nanoparticles (GNPs), antagomir-155, and nucleolin specific aptamer for breast cancer study and therapy. Here, GNPs were synthesized using citrate reduction and were modified by polyA sequences, AS1411 aptamer, and antagomir-155. Attachment of molecules were confirmed using gel electrophoresis, atomic force microscopy imaging and electrochemical test. The specific entry of modified nanoparticles was investigated by fluorescence microscopy. The efficacy of modified nanoparticles was evaluated using a quantitative polymerase chain reaction (q-PCR) for miR-155 and its target gene. Efficient and specific delivery of AuNP-Apt-anti-miR-155 to target cells was confirmed in comparison with the control cell. The q-PCR analysis showed not only a significant decrease in mir-155 levels but also an elevated TP53INP1 mRNA, direct target of miR-155. The proposed structure inhibits proliferation and stimulates apoptosis by increasing the expression of TP53INP1. Our results suggest that AuNP-Apt-anti-miR-155 could be a promising nano constructor for breast cancer treatment.


Assuntos
Antagomirs/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , MicroRNAs/antagonistas & inibidores , Oligodesoxirribonucleotídeos/administração & dosagem , Animais , Antagomirs/química , Apoptose/efeitos dos fármacos , Aptâmeros de Nucleotídeos , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetulus , Sistemas de Liberação de Medicamentos/métodos , Feminino , Ouro/química , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Oligodesoxirribonucleotídeos/química
13.
Rep Biochem Mol Biol ; 8(2): 200-207, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31832446

RESUMO

BACKGROUND: The enzyme beta-secretase 1 (BACE1) and its antisense transcript (BACE1-AS) have been implicated in the pathogenesis of Alzheimer's disease. Moreover, several lines of evidence point to their contribution in tumorigenesis. METHODS: In the present study, we evaluated expression of BACE1 mRNA (BACE1) and BACE1-AS in 54 breast cancer tissues and 54 adjacent non-cancerous tissues (ANCTs) from the same patients using quantitative real-time PCR. RESULTS: BACE1 was significantly down-regulated in tumoral tissues compared with ANCTs, while BACE1- AS expression was not significantly different between tumoral tissues and ANCTs. The Bayesian Multilevel model showed a significant difference in BACE1 expression between stage 1 and 2 cancers after age-effect adjustments. BACE1-AS expression was significantly greater in ER-positive than in ER-negative samples (P=0.01). BACE1 and BACE1-AS expression were not correlated with patient ages in any sample sets. CONCLUSION: Significant correlations were detected between expression of these genes in both tumoral tissues and ANCTs. The current study provides evidence for differential BACE1 expression in breast tissues and suggests further assessment of the role of BACE1 in the pathogenesis of cancer.

14.
Acta Parasitol ; 64(2): 236-245, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30788648

RESUMO

BACKGROUND: Fasciolosis is a zoonotic parasitic disease imposing a heavy load of livestock losses worldwide. PURPOSE: We aimed to evaluate immune-stimulatory effects of naloxone (NLX), an opioid receptor antagonist, in combination with alum in mice vaccinated with excretory-secretory antigens (E/S) of Fasciola hepatica. METHODS: 8-week-old female BALB/c mice were subcutaneously vaccinated using E/S antigens of F. hepatica. Experimental groups (14 mice per group) included: vaccine (E/S antigen), alum vaccine (E/S antigen plus alum), NLX vaccine (E/S antigen plus NLX), and alum-NLX vaccine (E/S antigen plus a mixture of alum-NLX). The control group was infused with PBS. Lymphocyte proliferation and the levels of IFN-γ, IL-4, IgG2a, IgG1, and total IgG were measured. RESULTS: Mice vaccinated with NLX or alum-NLX adjuvants showed significantly higher rates of lymphocyte proliferation, IFN-γ, total IgG, and IgG2a levels. The mice that were injected with alum showed a significantly higher concentration of IL-4. Ratios of IFN-γ/Il-4 and IgG2a/IgG1 were significantly higher in the NLX and alum-NLX groups in comparison with the groups vaccinated either with alum or without any adjuvant. A significantly higher protection rate (62.5%) was seen in mice vaccinated with the alum-NLX adjuvant compared to the other groups. CONCLUSION: NLX can be effective in conferring cellular immunity and protection against F. hepatica. It is recommended to consider this agent as a potential adjuvant in vaccines against fasciolosis.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Fasciolíase/prevenção & controle , Naloxona/farmacologia , Animais , Antígenos de Helmintos/administração & dosagem , Antígenos de Helmintos/imunologia , Proliferação de Células , Citocinas/imunologia , Fasciola hepatica , Fasciolíase/imunologia , Feminino , Imunidade Celular , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
15.
World J Surg Oncol ; 16(1): 211, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30336781

RESUMO

BACKGROUND: The role of long non-coding RNAs has been extensively appreciated in the contexts of cancer. Interferon γ-antisense RNA1 (IFNG-AS1) is an lncRNA located near to IFN-γ-encoding (IFNG) gene and regulates expression of IFNG in Th1 cells. METHODS: In the present study, we evaluated expression of IFNG and IFNG-AS1 in 108 breast samples including tumoral tissues and their adjacent non-cancerous tissues (ANCTs) using real-time PCR. IFNG-AS1 was significantly upregulated in tumoral tissues compared with ANCTs (expression ratio = 2.23, P = 0.03). RESULTS: Although the expression of IFNG was higher in tumoral tissues compared with ANCTs (relative expression = 1.89), it did not reach the level of significance (P = 0.07). IFNG expression was significantly higher in HER2-negative tumoral tissues compared with HER2-positive ones (P = 0.01) and in grade 1 samples compared with grade 2 ones (P = 0.03). No other significant difference was found in expressions of genes between other groups. CONCLUSION: Significant strong correlations were detected between expression of IFNG and IFNG-AS1 in both tumoral tissues and ANCTs. The present study provides evidences for participation of IFNG and IFNG-AS1 in the pathogenesis of breast cancer and warrants future studies to elaborate the underlying mechanism.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Regulação Neoplásica da Expressão Gênica , Interferon gama/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Prognóstico
16.
Exp Parasitol ; 189: 66-71, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29729492

RESUMO

Toxic effects of available therapeutics are major drawbacks for conventional management approaches in parasitic infections. Vaccines have provided a promising opportunity to obviate such unwanted complications. In present study, we examined immune augmenting capacities of an emerging adjuvant, Naltrexone, against Fasciola hepatica infection in BALB/c mice. Seventy BALB/c mice were divided into five experimental groups (14 mice per group) including 1- control (received PBS), 2- vaccine (immunized with F. hepatica E/S antigens), 3- Alum-vaccine (immunized with Alum adjuvant and E/S antigens), 4- NLT-vaccine (immunized with NLT adjuvant and E/S antigens), and 5- Alum-NLT-vaccine (immunized with mixed Alum-NLT adjuvant and E/S antigens). Lymphocyte stimulation index was assessed by MTT assay. Production of IFN-γ, IL-4, IgG2a and IgG1 was assessed by ELISA method. Results showed that NLT, either alone or in combination with alum, can induce immune response toward production of IFN-γ and IgG2a as representatives of Th1 immune response. Also, using this adjuvant in immunization experiment was associated with significantly high proliferative response of splenocytes/lymphocytes. Utilization of mixed Alum-NLT adjuvant revealed the highest protection rate (73.8%) in challenge test of mice infected with F. hepatica. These findings suggest the potential role of NLT as an effective adjuvant in induction of protective cellular and Th1 immune responses against fasciolosis.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Fasciola hepatica/imunologia , Fasciolíase/prevenção & controle , Naltrexona/uso terapêutico , Células Th1/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/administração & dosagem , Compostos de Alúmen/farmacologia , Compostos de Alúmen/uso terapêutico , Animais , Anticorpos Anti-Helmínticos/sangue , Ensaio de Imunoadsorção Enzimática , Fasciola hepatica/efeitos dos fármacos , Fasciolíase/tratamento farmacológico , Fasciolíase/imunologia , Feminino , Imunidade Celular/efeitos dos fármacos , Imunização , Imunoglobulina G/sangue , Interferon gama/análise , Interleucina-4/análise , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Naltrexona/administração & dosagem , Naltrexona/farmacologia , Distribuição Aleatória , Ovinos , Células Th1/efeitos dos fármacos , Vacinas Virais/administração & dosagem
17.
J Control Release ; 268: 323-334, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29107128

RESUMO

Active targeting in cancer nanomedicine, for improved delivery of agents and diagnose, has been reviewed as a successful way for facilitating active uptake of theranostic agents by the tumor cells. The application of a targeting moiety in the targeted carrier complexes can play an important role in differentiating between tumor and healthy tissues. The pharmaceutical carriers, as main part of complexes, can be polymeric nanoparticles, micelles, liposomes, nanogels and carbon nanotubes. The antibodies are among the natural ligands with highest affinity and specificity to target pharmaceutical nanoparticle conjugates. However, the limitations, such as size and long circulating half-lives, hinder reproducible manufacture in clinical studies. Therefore, novel approaches have moved towards minimizing and engineering conventional antibodies as fragments like scFv, Fab, nanobody, bispecific antibody, bifunctional antibody, diabody and minibody preserving their functional potential. Different formats of antibody fragments have been reviewed in this literature update, in terms of structure and function, as smart ligands in cancer diagnosis and therapy of tumor cells.


Assuntos
Anticorpos Biespecíficos/administração & dosagem , Sistemas de Liberação de Medicamentos , Fragmentos de Imunoglobulinas/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Humanos , Nanomedicina
18.
Asian Pac J Cancer Prev ; 17(S3): 299-304, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165242

RESUMO

Cytolethal distending toxin (CDT) is a secreted tripartite genotoxin produced by many pathogenic gram-negative bacteria. It is composed of three subunits, CdtA, CdtB and CdtC, and CdtB-associated deoxyribonuclease (DNase) activity is essential for the CDT toxicity. In the present study, to design a novel potentially antitumor drug against lung cancer, the possible mechanisms of cdtB anticancer properties were explored in the A549 human lung adenocarcinoma cell line. A recombinant plasmid pcDNA3.1/cdtB was constructed expressing CdtB of human periodontal bacterium Aggregatibacter actinomycetemcomitans and investigated for toxic properties in A549 cells and possible mechanisms. It was observed that plasmid pcDNA3.1/cdtB caused loss of cell viability, morphologic changes and induction of apoptosis. Furthermore, measurement of caspase activity indicated involvement of an intrinsic pathway of cell apoptosis. Consequently, the recombinant plasmid pcDNA3.1/cdtB may have potential as a new class of therapeutic agent for gene therapy of lung cancer.


Assuntos
Adenocarcinoma/patologia , Apoptose/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Imunossupressores/farmacologia , Neoplasias Pulmonares/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Aggregatibacter actinomycetemcomitans/química , Aggregatibacter actinomycetemcomitans/metabolismo , Western Blotting , Caspases/genética , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
19.
Expert Opin Biol Ther ; 16(6): 771-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26998622

RESUMO

INTRODUCTION: Gene therapy mainly depends on the use of appropriate delivery vehicles with no induction of immune responses and toxicity. The limitations of viral gene carriers such as induction of immunogenicity, random integration in the genome of the host, limitations in the size, has led to a movement toward non-viral systems with much safer properties. Biodegradable and biocompatible polymeric nanocarriers due to several unique properties such as excellent biocompatibility, prolonged gene circulation time, prevented gene degradation, passive targeting by using the enhanced permeability and retention (EPR) effect, and possibility of modulating polymers structure to obtain desirable therapeutic efficacy, are among the most promising systems for gene delivery. However, biodegradable gene delivery systems have some limitations such as inadequate stability and slow release of therapeutics which have to be overcome. Thus, a variety of advanced functional biodegradable delivery systems with more efficient gene delivery activity has recently been introduced. AREAS COVERED: This review summarizes different aspects of biodegradable and biocompatible nano carriers including formulation, mechanism of intracellular uptake, various potential applications of biodegradable nanoparticles and finally recent studies on the therapeutic efficacy of these nanoparticles in sustained delivery of genes. EXPERT OPINION: Biocompatible and biodegradable polymers will play a necessary and important role in developing new and safe carriers for oligonucleotide delivery. More working and the development of optimized polymers will reveal more their efficacy in the treatment of patients via helping in better gene therapy.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Técnicas de Transferência de Genes , Terapia Genética/métodos , Nanopartículas/administração & dosagem , Animais , Materiais Biocompatíveis/química , Química Farmacêutica , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Técnicas de Transferência de Genes/tendências , Terapia Genética/tendências , Humanos , Nanopartículas/química , Polímeros/administração & dosagem , Polímeros/química
20.
Iran J Parasitol ; 11(4): 480-489, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28127359

RESUMO

BACKGROUND: The current study was designed to evaluate immune responses induced by DNA vaccines encoding 8-kDa subunit of antigen B (HydI) of Echinococcus granulosus and murine interleukin 12 (IL-12) as genetic adjuvants in BALB/c mice. METHODS: Expression plasmid pcDNA3.1 containing HydI (pcHyd1) as vaccine along with the murine interleukin 12 (pcMIL12) as adjuvant were used. Thirty-five mice in the five experimental groups received PBS, empty pcDNA3.1, pcHydІ, pcMIL-12, and pcHydІ+ pcMIL-12 in days zero, 14th and 28th. Two weeks after the last immunization, evaluation of the immune response was performed by evaluating the proliferation of splenic lymphocytes, IFN-γ and IL-4, determination of IgG isotyping titer. RESULTS: Mice that received the pcHydI+pcMIL12 exhibited higher levels of lymphocyte proliferation compared to mice that received the pcHydI alone (P<0.001), and produced significantly more IFN-γ in comparison to other groups (P< 0.001). In addition, they produced significantly less IL-4 than mice receiving the PBS and the empty plasmid (P<0.023). The IgG2a levels were clearly higher in pcHydI+pcMIL12 group in comparison with the groups of pcHydI alone, empty plasmid, and PBS. In contrast, IgG1 was elevated in the group of pcHydI. CONCLUSION: Co-delivery of IL-12 with DNA encoding 8-kDa subunit of antigen B was effective significantly in inducing the immune response in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA