Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Integr Biol ; 11(3): 1-6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214673

RESUMO

Pharmacological indications suggest that anion channel-mediated plasma membrane (PM) anion efflux is crucial in early defense signaling to induce immune responses and programmed cell death in plants. Arabidopsis SLAC1, an S-type anion channel required for stomatal closure, is involved in cryptogein-induced PM Cl- efflux to positively modulate the activation of other ion fluxes, production of reactive oxygen species and a wide range of defense responses including hypersensitive cell death in tobacco BY-2 cells. We here analyzed disease resistance against several pathogens in multiple mutants of the SLAC/SLAH channels of Arabidopsis. Resistance against a biotrophic oomycete Hyaloperonospora arabidopsidis Noco2 was significantly enhanced in the SLAC1-overexpressing plants than in the wild-type, while that against a bacteria Pseudomonas syringae was not affected significantly. Possible regulatory roles of S-type anion channels in plant immunity and disease resistance against bacterial and oomycete pathogens is discussed.

2.
J Biochem ; 159(2): 201-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26330566

RESUMO

Small GTPases play important roles in various aspects of cell division as well as membrane trafficking. We and others previously showed that ADP-ribosylation factor 6 (Arf6) is locally activated around the ingressing cleavage furrow and recruited to the Flemming body in late cytokinesis phases, and involved in faithful completion of cytokinesis. However, knockout of the Arf6 gene or Arf6 depletion by siRNAs did not drastically influence cytokinesis. We here show that, in addition to Arf6, Class I Arfs (Arf1 and Arf3) are localized to the Flemming body, and that double knockdown of Arf1 and Arf3 moderately increases the proportion of multinucleate cells and simultaneous knockdown of Arf1, Arf3 and Arf6 leads to severe cytokinesis defects. These observations indicate that Arf1 and Arf3 as well as Arf6 play important roles in cytokinesis. We further show that EFA6 (exchange factor for Arf6) activates not only Arf6 but also Arf1 in the cell. Taken together with our previous data, these Arf GTPases are likely to be locally activated by EFA6 and in turn targeted to the Flemming body to complete cytokinesis.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Citocinese , Proteínas do Tecido Nervoso/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Complexo de Golgi , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
3.
Biol Open ; 4(7): 910-20, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26092867

RESUMO

We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)-transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn-TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn-TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery. We also found that VAMP2, an R-SNARE, is colocalized with endocytosed Tfn on punctate endosomal structures, and that its depletion in HeLa cells suppresses recycling vesicle exocytosis. These observations indicate that fusion of recycling vesicles with the PM downstream of the exocyst is mediated by SNAP23/25 and VAMP2, and provide novel insight into non-neuronal roles of VAMP2 and SNAP25.

4.
J Cell Sci ; 128(15): 2805-15, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092941

RESUMO

Retrograde trafficking from the Golgi complex to endoplasmic reticulum (ER) through COPI-coated vesicles has been implicated in lipid homeostasis. Here, we find that a block in COPI-dependent retrograde trafficking promotes processing and nuclear translocation of sterol regulatory element binding proteins (SREBPs), and upregulates the expression of downstream genes that are involved in lipid biosynthesis. This elevation in SREBP processing and activation is not caused by mislocalization of S1P or S2P (also known as MBTPS1 and MBTPS2, respectively), two Golgi-resident endoproteases that are involved in SREBP processing, but instead by increased Golgi residence of SREBPs, leading to their increased susceptibility to processing by the endoproteases. Analyses using a processing-defective SREBP mutant suggest that a fraction of SREBP molecules undergo basal cycling between the ER and Golgi in complex with SREBP cleavage-activating protein (SCAP). Furthermore, we show that SCAP alone is retrieved from the Golgi and moves to the ER after processing of SREBP under sterol-deficient conditions. Thus, our observations indicate that COPI-mediated retrograde trafficking is crucial for preventing unnecessary SREBP activation, by retrieving the small amounts of SCAP-SREBP complex that escape from the sterol-regulated ER retention machinery, as well as for the reuse of SCAP.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipogênese/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Esteróis/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Metaloendopeptidases , Pró-Proteína Convertases , Transporte Proteico/fisiologia , Serina Endopeptidases
5.
Autophagy ; 10(5): 878-88, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24674921

RESUMO

In flowering plants, the tapetum, the innermost layer of the anther, provides both nutrient and lipid components to developing microspores, pollen grains, and the pollen coat. Though the programmed cell death of the tapetum is one of the most critical and sensitive steps for fertility and is affected by various environmental stresses, its regulatory mechanisms remain mostly unknown. Here we show that autophagy is required for the metabolic regulation and nutrient supply in anthers and that autophagic degradation within tapetum cells is essential for postmeiotic anther development in rice. Autophagosome-like structures and several vacuole-enclosed lipid bodies were observed in postmeiotic tapetum cells specifically at the uninucleate stage during pollen development, which were completely abolished in a retrotransposon-insertional OsATG7 (autophagy-related 7)-knockout mutant defective in autophagy, suggesting that autophagy is induced in tapetum cells. Surprisingly, the mutant showed complete sporophytic male sterility, failed to accumulate lipidic and starch components in pollen grains at the flowering stage, showed reduced pollen germination activity, and had limited anther dehiscence. Lipidomic analyses suggested impairment of editing of phosphatidylcholines and lipid desaturation in the mutant during pollen maturation. These results indicate a critical involvement of autophagy in a reproductive developmental process of rice, and shed light on the novel autophagy-mediated regulation of lipid metabolism in eukaryotic cells.


Assuntos
Autofagia/genética , Flores/crescimento & desenvolvimento , Metabolismo dos Lipídeos/genética , Oryza , Proteínas de Plantas/fisiologia , Enzimas Ativadoras de Ubiquitina/fisiologia , Flores/genética , Flores/metabolismo , Meiose/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/metabolismo
6.
PLoS One ; 8(8): e70623, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950973

RESUMO

Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(-) and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(-) efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(-) efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Íons/metabolismo , Proteínas de Membrana/metabolismo , Nicotiana/metabolismo , Proteínas de Algas/farmacologia , Proteínas de Arabidopsis/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular , Expressão Gênica , Canais Iônicos/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Nicotiana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA