Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1231027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946749

RESUMO

Background: Tunisia harbors a rich collection of unexploited durum wheat landraces (Triticum durum ssp. durum) that have been gradually replaced by elite cultivars since the 1970s. These landraces represent an important potential source for broadening the genetic background of elite durum wheat cultivars and for the introgression of novel genes for key traits, including disease resistance, into these cultivars. Methods: In this study, single nucleotide polymorphism (SNP) markers were used to investigate the genetic diversity and population structure of a core collection of 235 durum wheat accessions consisting mainly of landraces. The high phenotypic and genetic diversity of the fungal pathogen Pyrenophora tritici-repentis (cause of tan spot disease of wheat) in Tunisia allowed the assessment of the accessions for tan spot resistance at the adult plant stage under field conditions over three cropping seasons. A genome-wide association study (GWAS) was performed using a 90k SNP array. Results: Bayesian population structure analysis with 9191 polymorphic SNP markers classified the accessions into two groups, where groups 1 and 2 included 49.79% and 31.49% of the accessions, respectively, while the remaining 18.72% were admixtures. Principal coordinate analysis, the unweighted pair group method with arithmetic mean and the neighbor-joining method clustered the accessions into three to five groups. Analysis of molecular variance indicated that 76% of the genetic variation was among individuals and 23% was between individuals. Genome-wide association analyses identified 26 SNPs associated with tan spot resistance and explained between 8.1% to 20.2% of the phenotypic variation. The SNPs were located on chromosomes 1B (1 SNP), 2B (4 SNPs), 3A (2 SNPs), 3B (2 SNPs), 4A (2 SNPs), 4B (1 SNP), 5A (2 SNPs), 5B (4 SNPs), 6A (5 SNPs), 6B (2 SNPs), and 7B (1 SNP). Four markers, one on each of chromosomes 1B, and 5A, and two on 5B, coincided with previously reported SNPs for tan spot resistance, while the remaining SNPs were either novel markers or closely related to previously reported SNPs. Eight durum wheat accessions were identified as possible novel sources of tan spot resistance that could be introgressed into elite cultivars. Conclusion: The results highlighted the significance of chromosomes 2B, 5B, and 6A as genomic regions associated with tan spot resistance.

2.
Plants (Basel) ; 12(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36771636

RESUMO

Climate changes over the past 25 years have led to conducive conditions for invasive and transboundary fungal disease occurrence, including the re-emergence of wheat stem rust disease, caused by Puccinia graminis f.sp. tritici (Pgt) in East Africa, Europe, and the Mediterranean basin. Since 2018, sporadic infections have been observed in Tunisia. In this study, we investigated Pgt occurrence at major Tunisian wheat growing areas. Pgt monitoring, assessment, and sampling from planted trap nurseries at five different locations over two years (2021 and 2022) revealed the predominance of three races, namely TTRTF (Clade III-B), TKKTF (Clade IV-F), and TKTTF (Clade IV-B). Clade III-B was the most prevalent in 2021 as it was detected at all locations, while in 2022 Pgt was only reported at Beja and Jendouba, with the prevalence of Clade IV-B. The low levels of disease incidence during these two years and Pgt population diversity suggest that this fungus most likely originated from exotic incursions and that climate factors could have caused disease establishment in Tunisia. Further evaluation under the artificial disease pressure of Tunisian wheat varieties and weather-based modeling for early disease detection in the Mediterranean area could be helpful in monitoring and predicting wheat stem rust emergence and epidemics.

3.
Plant Dis ; 106(2): 464-474, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34184550

RESUMO

Pyrenophora tritici-repentis causes tan spot, an important foliar disease of wheat. A collection of P. tritici-repentis isolates from Tunisia, located in one of the main secondary centers of diversification of durum wheat, was tested for phenotypic race classification based on virulence on a host differential set and for the presence of the necrotrophic effector (NE) genes ToxA, ToxB, and toxb by PCR analysis. While races 2, 4, 5, 6, 7, and 8 were identified according to their virulence phenotypes, PCR testing indicated the presence of "atypical" isolates that induced necrosis on the wheat differential 'Glenlea,' but lacked the expected ToxA gene, suggesting the involvement of other NEs in the P. tritici-repentis/wheat interaction. Genetic diversity and the P. tritici-repentis population structure were explored further by examining 59 Tunisian isolates and 35 isolates from Algeria, Azerbaijan, Canada, Iran, and Syria using 24 simple sequence repeat markers. Average genetic diversity, overall gene flow, and percentage polymorphic loci were estimated as 0.58, 2.09, and 87%, respectively. Analysis of molecular variance showed that 81% of the genetic variance occurred within populations and 19% occurred between populations. Cluster analysis by the unweighted pair group method indicated that ToxB- isolates grouped together and were distantly related to ToxB+ isolates. Based on Nei's analysis, the global collection clustered into two distinct groups according to their region of origin. The results suggest that geographic origin and the host specificity imposed by different NEs can lead to differentiation among P. tritici-repentis populations.


Assuntos
Ascomicetos , Doenças das Plantas , Ascomicetos/genética , Doenças das Plantas/genética , Triticum/genética , Tunísia
4.
Mol Ecol ; 17(17): 3818-26, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18673440

RESUMO

Rust fungi can overcome the effect of host resistance genes rapidly, and spores can disperse long distance by wind. Here we demonstrate a foreign incursion of similar strains of the wheat yellow rust fungus, Puccinia striiformis f. sp. tritici, in North America, Australia and Europe in less than 3 years. One strain defined by identity at 15 virulence loci and 130 amplified fragment length polymorphism (AFLP) fragments was exclusive to North America (present since 2000) and Australia (since 2002). Another strain of the same virulence phenotype, but differing in two AFLP fragments, was exclusive to Europe (present since 2000-2001) as well as Western and Central Asia and the Red Sea Area (first appearance unknown). This may be the most rapid spread of an important crop pathogen on the global scale. The limited divergence between the two strains and their derivatives, and the temporal-spatial occurrence pattern confirmed a recent spread. The data gave evidence for additional intercontinental dispersal events in the past, that is, many isolates sampled before 2000 in Europe, North America and Australia had similar AFLP fingerprints, and isolates from South Africa, which showed no divergence in AFLP, differed by only two fragments from particular isolates from Central Asia, West Asia and South Europe, respectively. Previous research has demonstrated that isolates of the two new strains produced up to two to three times more spores per day than strains found in USA and Europe before 2000, suggesting that increased aggressiveness at this level may accelerate global spread of crop pathogens.


Assuntos
Basidiomycota/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Austrália , Basidiomycota/patogenicidade , DNA Fúngico/genética , Europa (Continente) , Evolução Molecular , América do Norte , Fenótipo , Filogenia , Doenças das Plantas/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA