Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 102(2): 197-211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38015242

RESUMO

The underlying mechanisms of asbestos-related autoimmunity are poorly understood. As the size, surface reactivity, and free radical activity of asbestos particles are considered crucial regarding the health effects, this study aims to compare the effects of exposure to pristine amosite (pAmo) or milled amosite (mAmo) particles on lung damage, autoimmunity, and macrophage phenotype. Four months after lung exposure to 0.1 mg of amosite, BAL levels of lactate dehydrogenase, protein, free DNA, CCL2, TGF-ß1, TIMP-1, and immunoglobulin A of pAmo-exposed C57Bl/6 mice were increased when compared to fluids from control- and mAmo-exposed mice. Effects in pAmo-exposed mice were associated with lung fibrosis and autoimmunity including anti-double-strand DNA autoantibody production. mAmo or pAmo at 20 µg/cm2 induced a pro-inflammatory phenotype characterized by a significant increase in TNFα and IL-6 secretion on human monocyte-derived macrophages (MDMs). mAmo and pAmo exposure induced a decrease in the efferocytosis capacities of MDMs, whereas macrophage abilities to phagocyte fluorescent beads were unchanged when compared to control MDMs. mAmo induced IL-6 secretion and reduced the percentage of MDMs expressing MHCII and CD86 markers involved in antigen and T-lymphocyte stimulation. By contrast, pAmo but not mAmo activated the NLRP3 inflammasome, as evaluated through quantification of caspase-1 activity and IL-1ß secretion. Our results demonstrated that long-term exposure to pAmo may induce significant lung damage and autoimmune effects, probably through an alteration of macrophage phenotype, supporting in vivo the higher toxicity of entire amosite (pAmo) with respect to grinded amosite. However, considering their impact on efferocytosis and co-stimulation markers, mAmo effects should not be neglected. KEY MESSAGES: Lung fibrosis and autoimmunity induced by amosite particles depend on their physicochemical characteristics (size and surface) Inhalation exposure of mice to pristine amosite fibers is associated with lung fibrosis and autoimmunity Anti-dsDNA antibody is a marker of autoimmunity in mice exposed to pristine amosite fibers Activation of lung mucosa-associated lymphoid tissue, characterized by IgA production, after exposure to pristine amosite fibers Pristine and milled amosite particle exposure reduced the efferocytosis capacity of human-derived macrophages.


Assuntos
Amianto Amosita , Fibrose Pulmonar , Humanos , Camundongos , Animais , Amianto Amosita/farmacologia , Amianto Amosita/toxicidade , Fibrose Pulmonar/induzido quimicamente , Autoimunidade , Interleucina-6/metabolismo , Pulmão/metabolismo , Macrófagos , DNA/metabolismo
2.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894824

RESUMO

While exposure to long amphibolic asbestos fibers (L > 10 µm) results in the development of severe diseases including inflammation, fibrosis, and mesothelioma, the pathogenic activity associated with short fibers (L < 5 µm) is less clear. By exposing murine macrophages to short (SFA) or long (LFA) fibers of amosite asbestos different in size and surface chemistry, we observed that SFA internalization resulted in pyroptotic-related immunogenic cell death (ICD) characterized by the release of the pro-inflammatory damage signal (DAMP) IL-1α after inflammasome activation and gasdermin D (GSDMD)-pore formation. In contrast, macrophage responses to non-internalizable LFA were associated with tumor necrosis factor alpha (TNF-α) release, caspase-3 and -7 activation, and apoptosis. SFA effects exclusively resulted from Toll-like receptor 4 (TLR4), a pattern-recognition receptor (PRR) recognized for its ability to sense particles, while the response to LFA was elicited by a multifactorial ignition system involving the macrophage receptor with collagenous structure (SR-A6 or MARCO), reactive oxygen species (ROS) cascade, and TLR4. Our findings indicate that asbestos fiber size and surface features play major roles in modulating ICD and inflammatory pathways. They also suggest that SFA are biologically reactive in vitro and, therefore, their inflammatory and toxic effects in vivo should not be underestimated.


Assuntos
Amianto Amosita , Amianto , Camundongos , Animais , Amianto Amosita/toxicidade , Receptor 4 Toll-Like , Macrófagos , Amianto/toxicidade , Apoptose
3.
Arch Toxicol ; 97(4): 1001-1015, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840754

RESUMO

IL-1α is an intracellular danger signal (DAMP) released by macrophages contributing to the development of silica-induced lung inflammation. The exact molecular mechanism orchestrating IL-1α extracellular release from particle-exposed macrophages is still unclear. To delineate this process, murine J774 and bone-marrow derived macrophages were exposed to increasing concentrations (1-40 cm2/ml) of a set of amorphous and crystalline silica particles with different surface chemical features. In particular, these characteristics include the content of nearly free silanols (NFS), a silanol population responsible for silica cytotoxicity recently identified. We first observed de novo stocks of IL-1α in macrophages after silica internalization regardless of particle physico-chemical characteristics and cell stress. IL-1α intracellular production and accumulation were observed by exposing macrophages to biologically-inert or cytotoxic crystalline and amorphous silicas. In contrast, only NFS-rich reactive silica particles triggered IL-1α release into the extracellular milieu from necrotic macrophages. We demonstrate that IL-1α is actively secreted through the formation of gasdermin D (GSDMD) pores in the plasma membrane and not passively released after macrophage plasma membrane lysis. Our findings indicate that the GSDMD pore-dependent secretion of IL-1α stock from macrophages solely depends on cytotoxicity induced by NFS-rich silica. This new regulated process represents a key first event in the mechanism of silica toxicity, suitable to refine the existing adverse outcome pathway (AOP) for predicting the inflammatory activity of silicas.


Assuntos
Gasderminas , Macrófagos , Camundongos , Animais , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Necrose , Dióxido de Silício/química
4.
Front Immunol ; 12: 666107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194430

RESUMO

Macrophages are not only derived from circulating blood monocytes or embryonic precursors but also expand by proliferation. The origin determines macrophage fate and functions in steady state and pathological conditions. Macrophages predominantly infiltrate fibre-induced mesothelioma tumors and contribute to cancer development. Here, we revealed their ontogeny by comparing the response to needle-like mesotheliomagenic carbon nanotubes (CNT-7) with tangled-like non-mesotheliomagenic CNT-T. In a rat peritoneal cavity model of mesothelioma, both CNT induced a rapid macrophage disappearance reaction (MDR) of MHCIIlow resident macrophages generating an empty niche available for macrophage repopulation. Macrophage depletion after mesotheliomagenic CNT-7 was followed by a substantial inflammatory reaction, and macrophage replenishment completed after 7 days. Thirty days after non-mesotheliomagenic CNT-T, macrophage repopulation was still incomplete and accompanied by a limited inflammatory reaction. Cell depletion experiments, flow cytometry and RNA-seq analysis demonstrated that, after mesotheliomagenic CNT-7 exposure, resident macrophages were mainly replaced by an influx of monocytes, which differentiated locally into MHCIIhigh inflammatory macrophages. In contrast, the low inflammatory response induced by CNT-T was associated by the accumulation of self-renewing MHCIIlow macrophages that initially derive from monocytes. In conclusion, the mesotheliomagenic response to CNT specifically relies on macrophage niche recolonization by monocyte-derived inflammatory macrophages. In contrast, the apparent homeostasis after non-mesotheliomagenic CNT treatment involves a macrophage regeneration by proliferation. Macrophage depletion and repopulation are thus decisive events characterizing the carcinogenic activity of particles and fibres.


Assuntos
Macrófagos/imunologia , Mesotelioma/imunologia , Monócitos/imunologia , Nanotubos de Carbono/efeitos adversos , Animais , Diferenciação Celular , Proliferação de Células , Antígenos de Histocompatibilidade Classe II/metabolismo , Inflamação , Macrófagos/citologia , Macrófagos/metabolismo , Mesotelioma/induzido quimicamente , Monócitos/citologia , Monócitos/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Cavidade Peritoneal/citologia , Ratos
5.
Food Chem Toxicol ; 154: 112352, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34153347

RESUMO

BACKGROUND: Nanotechnologies provide new opportunities for improving the safety, quality, shelf life, flavor and appearance of foods. The most common nanoparticles (NPs) in human diet are silver metal, mainly present in food packaging and appliances, and silicon and titanium dioxides used as additives. The rapid development and commercialization of consumer products containing these engineered NPs is, however, not well supported by appropriate toxicological studies and risk assessment. Local and systemic toxicity and/or disruption of the gut microbiota (GM) have already been observed after oral administration of NPs in experimental animals, but results are not consistent and doses used were often much higher than the estimated human intakes. In view of the strong evidence linking alterations of the GM to cardiometabolic (CM) diseases, we hypothesized that dietary NPs might disturb this GM-CM axis. MATERIALS AND METHODS: We exposed male C57BL/6JRj mice (n = 13 per dose group) to dietary NPs mixed in food pellets at doses relevant for human exposure: Ag (0, 4, 40 or 400 µg/kg pellet), SiO2 (0, 0.8, 8 and 80 mg/kg pellet) or TiO2 (0, 0.4, 4 or 40 mg/kg pellet). After 24 weeks of exposure, we assessed effects on the GM and CM health (n = 8 per dose group). The reversibility of the effects was examined after 8 additional weeks without NPs exposure (recovery period, n ≤ 5 per dose group). RESULTS: No overt toxicity was recorded. The GM ß-diversity was dose-dependently disrupted by the three NPs, and the bacterial short chain fatty acids (SCFAs) were dose-dependently reduced after the administration of SiO2 and TiO2 NPs. These effects disappeared completely or partly after the recovery period, strengthening the association with dietary NPs. We did not observe atheromatous disease or glucose intolerance after NP exposure. Instead, dose-dependent decreases in the expression of IL-6 in the liver, circulating triglycerides (TG) and urea nitrogen (BUN) were recorded after administration of the NPs. CONCLUSION: We found that long-term oral exposure to dietary NPs at doses relevant for estimated human intakes disrupts the GM composition and function. These modifications did not appear associated with atheromatous or deleterious metabolic outcomes.


Assuntos
Exposição Dietética/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas/química , Administração Oral , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Interleucina-6/metabolismo , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/toxicidade , Camundongos Endogâmicos C57BL , Dióxido de Silício/administração & dosagem , Dióxido de Silício/farmacologia , Dióxido de Silício/toxicidade , Prata/administração & dosagem , Prata/farmacologia , Prata/toxicidade , Titânio/administração & dosagem , Titânio/farmacologia , Titânio/toxicidade , Triglicerídeos/metabolismo
6.
Arch Toxicol ; 95(4): 1251-1266, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33779765

RESUMO

CONTEXT: The addition of silver (Ag) to food items, and its migration from food packaging and appliances results in a dietary exposure in humans, estimated to 70-90 µg Ag/day. In view of the well-known bactericidal activity of Ag ions, concerns arise about a possible impact of dietary Ag on the gut microbiota (GM), which is a master determinant of human health and diseases. Repeated oral administration of Ag acetate (AgAc) can also cause systemic toxicity in rats with reported NOAELs of 4 mg AgAc/b.w./d for impaired fertility and 0.4 mg AgAc/b.w./d for developmental toxicity. OBJECTIVE: The objective of this study was to investigate whether oral exposure to AgAc can induce GM alterations at doses causing reproductive toxicity in rats. METHODS: Male and female Wistar rats were exposed during 10 weeks to AgAc incorporated into food (0, 0.4, 4 or 40 mg/kg b.w./d), and we analyzed the composition of the GM (α- and ß-diversity). We documented bacterial function by measuring short-chain fatty acid (SCFA) production in cecal content. Ferroxidase activity, a biomarker of systemic Ag toxicity, was measured in serum. RESULTS AND CONCLUSIONS: From 4 mg/kg b.w./d onwards, we recorded systemic toxicity, as indicated by the reduction of serum ferroxidase activity, as well as serum Cu and Se concentrations. This systemic toxic response to AgAc might contribute to explain reprotoxic manifestations. We observed a dose-dependent modification of the GM composition in male rats exposed to AgAc. No impact of AgAc exposure on the production of bacterial SCFA was recorded. The limited GM changes recorded in this study do not appear related to a reprotoxicity outcome.


Assuntos
Acetatos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Compostos de Prata/toxicidade , Acetatos/administração & dosagem , Administração Oral , Animais , Ceruloplasmina/metabolismo , Relação Dose-Resposta a Droga , Feminino , Masculino , Nível de Efeito Adverso não Observado , Ratos , Ratos Wistar , Compostos de Prata/administração & dosagem
7.
Proc Natl Acad Sci U S A ; 117(45): 27836-27846, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097669

RESUMO

Inhalation of silica particles can induce inflammatory lung reactions that lead to silicosis and/or lung cancer when the particles are biopersistent. This toxic activity of silica dusts is extremely variable depending on their source and preparation methods. The exact molecular moiety that explains and predicts this variable toxicity of silica remains elusive. Here, we have identified a unique subfamily of silanols as the major determinant of silica particle toxicity. This population of "nearly free silanols" (NFS) appears on the surface of quartz particles upon fracture and can be modulated by thermal treatments. Density functional theory calculations indicates that NFS locate at an intersilanol distance of 4.00 to 6.00 Å and form weak mutual interactions. Thus, NFS could act as an energetically favorable moiety at the surface of silica for establishing interactions with cell membrane components to initiate toxicity. With ad hoc prepared model quartz particles enriched or depleted in NFS, we demonstrate that NFS drive toxicity, including membranolysis, in vitro proinflammatory activity, and lung inflammation. The toxic activity of NFS is confirmed with pyrogenic and vitreous amorphous silica particles, and industrial quartz samples with noncontrolled surfaces. Our results identify the missing key molecular moieties of the silica surface that initiate interactions with cell membranes, leading to pathological outcomes. NFS may explain other important interfacial processes involving silica particles.


Assuntos
Silanos/química , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Membrana Celular , Cristalização , Poeira , Tamanho da Partícula , Quartzo/química , Quartzo/toxicidade , Propriedades de Superfície
8.
J Toxicol ; 2020: 8261058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399030

RESUMO

Cymbopogon giganteus Chiov. (Poaceae) is a medicinal plant used to treat various diseases in traditional medicine in several African countries. The present study aims to evaluate the oral and inhalation toxicity as well as the mutagenic effects of the essential oil of Cymbopogon giganteus leaves (EOCG) from a sample collected in Benin. Mutagenic potential was assessed by the Ames test using Salmonella typhimurium strains TA98 and TA100. Oral acute toxicity was carried out by administration of a single dose of 2000 mg/kg b.w. to Wistar rats while oral subacute toxicity was assessed by daily administration of 50 and 500 mg/kg of EOCG for 28 days. Finally, inhalation toxicity was assessed by administration of a single dose of 0.125%, 0.5%, 2% or 5% v/v of EOCG emulsions in 0.05% v/v lecithin solution in sterile water for the first experiment, and in a second one by administration of single dose of 0.125% or 0.5% v/v. A broncho-alveolar lavage was performed after 3 h or 24 h, respectively. The results show that EOCG is not mutagenic on Salmonella typhimurium strains at the highest concentration tested (200 µg/plate). In the acute oral toxicity study, EOCG induce neither mortality nor toxicity, showing that the LD50 is greater than 2000 mg/kg. The subacute oral toxicity study at both doses did not show any significant difference in body weight, relative organ weight, hematological and/or biochemical parameters or histopathology as compared to the control group. EOCG induced mortality and inflammation in lungs 3 h after administration of a single dose of 5% or 2% v/v. Single doses of 0.125% or 0.5% v/v did not induce inflammation, cell recruitment nor cytotoxicity in lungs 3 h or 24 h after administration, suggesting safety at these concentrations. This first report on the in vivo toxicity will be useful to guide safe uses of EOCG.

9.
Part Fibre Toxicol ; 17(1): 6, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996255

RESUMO

BACKGROUND: Li-ion batteries (LIB) are used in most portable electronics. Among a wide variety of materials, LiCoO2 (LCO) is one of the most used for the cathode of LIB. LCO particles induce oxidative stress in mouse lungs due to their Co content, and have a strong inflammatory potential. In this study, we assessed the mutagenic potential of LCO particles in lung cells in comparison to another particulate material used in LIB, LTO (Li4Ti5O12), which has a low inflammatory potential compared to LCO particles. RESULTS: We assessed the mutagenic potential of LCO and LTO particles in vitro by performing a cytokinesis-block micronucleus (MN) assay with rat lung epithelial cells (RLE), as well as in vivo in alveolar type II epithelial (AT-II) cells. LCO particles induced MN in vitro at non-cytotoxic concentrations and in vivo at non-inflammatory doses, indicating a primary genotoxic mechanism. LTO particles did not induce MN. Electron paramagnetic resonance and terephthalate assays showed that LCO particles produce hydroxyl radicals (•OH). Catalase inhibits this •OH production. In an alkaline comet assay with the oxidative DNA damage repair enzyme human 8-oxoguanine DNA glycosylase 1, LCO particles induced DNA strand breaks and oxidative lesions. The addition of catalase reduced the frequency of MN induced by LCO particles in vitro. CONCLUSIONS: We report the mutagenic activity of LCO particles used in LIB in vitro and in vivo. Our data support the role of Co(II) ions released from these particles in their primary genotoxic activity which includes the formation of •OH by a Fenton-like reaction, oxidative DNA lesions and strand breaks, thus leading to chromosomal breaks and the formation of MN. Documenting the genotoxic potential of the other LIB particles, especially those containing Co and/or Ni, is therefore needed to guarantee a safe and sustainable development of LIB.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Cobalto/toxicidade , Dano ao DNA , Radical Hidroxila/metabolismo , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Óxidos/toxicidade , Material Particulado/toxicidade , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cobalto/química , Fontes de Energia Elétrica , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Óxidos/química , Tamanho da Partícula , Material Particulado/química , Ratos , Ratos Wistar
10.
Arch Toxicol ; 92(5): 1673-1684, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29550861

RESUMO

Rechargeable Li-ion batteries (LIB) are increasingly produced and used worldwide. LIB electrodes are made of micrometric and low solubility particles, consisting of toxicologically relevant elements. The health hazard of these materials is not known. Here, we investigated the respiratory hazard of three leading LIB components (LiFePO4 or LFP, Li4Ti5O12 or LTO, and LiCoO2 or LCO) and their mechanisms of action. Particles were characterized physico-chemically and elemental bioaccessibility was documented. Lung inflammation and fibrotic responses, as well as particle persistence and ion bioavailability, were assessed in mice after aspiration of LIB particles (0.5 or 2 mg); crystalline silica (2 mg) was used as reference. Acute inflammatory lung responses were recorded with the 3 LIB particles and silica, LCO being the most potent. Inflammation persisted 2 m after LFP, LCO and silica, in association with fibrosis in LCO and silica lungs. LIB particles persisted in the lungs after 2 m. Endogenous iron co-localized with cobalt in LCO lungs, indicating the formation of ferruginous bodies. Fe and Co ions were detected in the broncho-alveolar lavage fluids of LFP and LCO lungs, respectively. Hypoxia-inducible factor (HIF) -1α, a marker of fibrosis and of the biological activity of Co ions, was upregulated in LCO and silica lungs. This study identified, for the first time, the respiratory hazard of LIB particles. LCO was at least as potent as crystalline silica to induce lung inflammation and fibrosis. Iron and cobalt, but not lithium, ions appear to contribute to LFP and LCO toxicity, respectively.


Assuntos
Poluentes Atmosféricos/toxicidade , Cobalto/toxicidade , Fontes de Energia Elétrica , Lítio/toxicidade , Óxidos/toxicidade , Pneumonia/induzido quimicamente , Administração por Inalação , Poluentes Atmosféricos/química , Poluentes Atmosféricos/farmacocinética , Animais , Disponibilidade Biológica , Líquido da Lavagem Broncoalveolar/química , Cobalto/química , Cobalto/farmacocinética , Feminino , Fibrose/induzido quimicamente , Fibrose/patologia , Ferro/química , Ferro/farmacocinética , Ferro/toxicidade , Lítio/química , Lítio/farmacocinética , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Óxidos/química , Óxidos/farmacocinética , Tamanho da Partícula , Pneumonia/patologia , Titânio/química , Titânio/farmacocinética , Titânio/toxicidade , Testes de Toxicidade
11.
Arch Toxicol ; 92(4): 1349-1361, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29484482

RESUMO

Occupational exposure to indium tin oxide (ITO) particles has been associated with the development of severe lung diseases, including pulmonary alveolar proteinosis (PAP). The mechanisms of this lung toxicity remain unknown. Here, we reveal the respective roles of resident alveolar (Siglec-Fhigh AM) and recruited interstitial (Siglec-Flow IM) macrophages contributing in concert to the development of PAP. In mice treated with ITO particles, PAP is specifically associated with IL-1α (not GM-CSF) deficiency and Siglec-Fhigh AM (not Siglec-Flow IM) depletion. Mechanistically, ITO particles are preferentially phagocytosed and dissolved to soluble In3+ by Siglec-Flow IM. In contrast, Siglec-Fhigh AM weakly phagocytose or dissolve ITO particles, but are sensitive to released In3+ through the expression of the transferrin receptor-1 (TfR1). Blocking pulmonary Siglec-Flow IM recruitment in CCR2-deficient mice reduces ITO particle dissolution, In3+ release, Siglec-Fhigh AM depletion, and PAP formation. Restoration of IL-1-related Siglec-Fhigh AM also prevented ITO-induced PAP. We identified a new mechanism of secondary PAP development according to which metal ions released from inhaled particles by phagocytic IM disturb IL-1α-dependent AM self-maintenance and, in turn, alveolar clearance.


Assuntos
Macrófagos Alveolares/imunologia , Macrófagos/imunologia , Proteinose Alveolar Pulmonar/imunologia , Compostos de Estanho/toxicidade , Animais , Humanos , Interleucina-1alfa/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Exposição Ocupacional , Fagocitose , Proteinose Alveolar Pulmonar/induzido quimicamente , Receptores da Transferrina/metabolismo
12.
J Pathol ; 243(3): 320-330, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28799208

RESUMO

Monocytes infiltrating scar tissue are predominantly viewed as progenitor cells. Here, we show that tissue CCR2+ monocytes have specific immunosuppressive and profibrotic functions. CCR2+ monocytic cells are acutely recruited to the lung before the onset of silica-induced fibrosis in mice. These tissue monocytes are defined as monocytic myeloid-derived suppressor cells (M-MDSCs) because they significantly suppress T-lymphocyte proliferation in vitro. M-MDSCs collected from silica-treated mice also express transforming growth factor (TGF)-ß1, which stimulates lung fibroblasts to release tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of metalloproteinase collagenolytic activity. By using LysMCreCCR2loxP/loxP mice, we show that limiting CCR2+ M-MDSC accumulation reduces the pulmonary contents of TGF-ß1, TIMP-1 and collagen after silica treatment. M-MDSCs do not differentiate into lung macrophages, granulocytes or fibrocytes during pulmonary fibrogenesis. Collectively, our data indicate that M-MDSCs contribute to lung fibrosis by specifically promoting a non-degrading collagen microenvironment. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Monócitos/metabolismo , Células Supressoras Mieloides/citologia , Fibrose Pulmonar/metabolismo , Receptores CCR2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Proliferação de Células/fisiologia , Colágeno/metabolismo , Pulmão/patologia , Ativação Linfocitária/fisiologia , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/patologia
13.
Part Fibre Toxicol ; 13(1): 46, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549627

RESUMO

BACKGROUND: The asbestos-like toxicity of some engineered carbon nanotubes (CNT), notably their capacity to induce mesothelioma, is a serious cause of concern for public health. Here we show that carcinogenic CNT induce an early and sustained immunosuppressive response characterized by the accumulation of monocytic Myeloid Derived Suppressor Cells (M-MDSC) that counteract effective immune surveillance of tumor cells. METHODS: Wistar rats and C57BL/6 mice were intraperitoneally injected with carcinogenic multi-walled Mitsui-7 CNT (CNT-7) or crocidolite asbestos. Peritoneal mesothelioma development and immune cell accumulation were assessed until 12 months. Leukocyte sub-populations were identified by recording expression of CD11b/c and His48 by flow cytometry. The immunosuppressive activity on T lymphocytes of purified peritoneal leukocytes was assessed in a co-culture assay with activated spleen cells. RESULTS: We demonstrate that long and short mesotheliomagenic CNT-7 injected in the peritoneal cavity of rats induced, like asbestos, an early and selective accumulation of monocytic cells (CD11b/c(int) and His48(hi)) which possess the ability to suppress polyclonal activation of T lymphocytes and correspond to M-MDSC. Peritoneal M-MDSC persisted during the development of peritoneal mesothelioma in CNT-7-treated rats but were only transiently recruited after non-carcinogenic CNT (CNT-M, CNT-T) injection. Peritoneal M-MDSC did not accumulate in mice which are resistant to mesothelioma development. CONCLUSIONS: Our data provide new insights into the initial pathogenic events induced by CNT, adding a new component to the adverse outcome pathway leading to mesothelioma development. The specificity of the M-MDSC response after carcinogenic CNT exposure highlights the interest of this response for detecting the ability of new nanomaterials to cause cancer.


Assuntos
Carcinógenos/toxicidade , Mesotelioma/induzido quimicamente , Monócitos/imunologia , Nanotubos de Carbono/toxicidade , Animais , Xenoenxertos , Humanos , Masculino , Mesotelioma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
14.
Nanotoxicology ; 10(4): 488-500, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26444902

RESUMO

Carbon nanotubes (CNT) have been reported to induce lung inflammation and fibrosis in rodents. We investigated the direct and indirect cellular mechanisms mediating the fibrogenic activity of multi-wall (MW) CNT on fibroblasts. We showed that MWCNT indirectly stimulate lung fibroblast (MLg) differentiation, via epithelial cells and macrophages, whereas no direct effect of MWCNT on fibroblast differentiation or collagen production was detected. MWCNT directly stimulated the proliferation of fibroblasts primed with low concentrations of growth factors, such as PDGF, TGF-ß or EGF. MWCNT prolonged ERK 1/2 phosphorylation induced by low concentrations of PDGF or TGF-ß in fibroblasts. This phenomenon and the proliferative activity of MWCNT on fibroblasts was abrogated by the inhibitors of ERK 1/2, PDGF-, TGF-ß- and EGF-receptors. This activity was also reduced by amiloride, an endocytosis inhibitor. Finally, the lung fibrotic response to several MWCNT samples (different in length and diameter) correlated with their in vitro capacity to stimulate the proliferation of fibroblasts and to prolong ERK 1/2 signaling in these cells. Our findings point to a crosstalk between MWCNT, kinase receptors, ERK 1/2 signaling and endocytosis which stimulates the proliferation of fibroblasts. The mechanisms of action identified in this study contribute to predict the fibrogenic potential of MWCNT.


Assuntos
Endocitose/efeitos dos fármacos , Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fibrose Pulmonar/patologia , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Amilorida/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Receptores ErbB/antagonistas & inibidores , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/fisiologia , Camundongos , Fosforilação , Fibrose Pulmonar/induzido quimicamente , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
15.
J Pathol ; 235(5): 698-709, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25421226

RESUMO

Macrophages play a central role in immune and tissue responses of granulomatous lung diseases induced by pathogens and foreign bodies. Circulating monocytes are generally viewed as central precursors of these tissue effector macrophages. Here, we provide evidence that granulomas derive from alveolar macrophages serving as a local reservoir for the expansion of activated phagocytic macrophages. By exploring lung granulomatous responses to silica particles in IL-1-deficient mice, we found that the absence of IL-1α, but not IL-1ß, was associated with reduced CD11b(high) phagocytic macrophage accumulation and fewer granulomas. This defect was associated with impaired alveolar clearance and resulted in the development of pulmonary alveolar proteinosis (PAP). Reconstitution of IL-1α(-/-) mice with recombinant IL-1α restored lung clearance functions and the pulmonary accumulation of CD11b(high) phagocytic macrophages. Mechanistically, IL-1α induced the proliferation of CD11b(low) alveolar macrophages and differentiated these cells into CD11b(high) macrophages which perform critical phagocytic functions and organize granuloma. We newly discovered here that IL-1α triggers lung responses requiring macrophage proliferation and maturation from tissue-resident macrophages.


Assuntos
Antígeno CD11b/metabolismo , Proliferação de Células , Granuloma/metabolismo , Interleucina-1alfa/metabolismo , Pneumopatias/metabolismo , Ativação de Macrófagos , Macrófagos Alveolares/metabolismo , Proteinose Alveolar Pulmonar/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Granuloma/induzido quimicamente , Granuloma/genética , Granuloma/patologia , Interleucina-1alfa/deficiência , Interleucina-1alfa/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pneumopatias/induzido quimicamente , Pneumopatias/genética , Pneumopatias/patologia , Macrófagos Alveolares/patologia , Camundongos Knockout , Fagocitose , Fenótipo , Proteinose Alveolar Pulmonar/induzido quimicamente , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/patologia , Dióxido de Silício , Fatores de Tempo
16.
J Nucl Med ; 56(1): 127-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537989

RESUMO

UNLABELLED: Idiopathic pulmonary fibrosis is characterized by a progressive and irreversible respiratory failure. Validated noninvasive methods able to assess disease activity are essential for prognostic purposes as well as for the evaluation of emerging antifibrotic treatments. METHODS: C57BL/6 mice were used in a murine model of pulmonary fibrosis induced by an intratracheal instillation of bleomycin (control mice were instilled with a saline solution). At different times after instillation, PET/CT with (18)F-FDG- or (18)F-4-fluorobenzamido-N-ethylamino-maleimide ((18)F-FBEM)-labeled leukocytes was performed to assess metabolic activity and leukocyte recruitment, respectively. RESULTS: In bleomycin-treated mice, a higher metabolic activity was measured on (18)F-FDG PET/CT scans from day 7 to day 24 after instillation, with a peak of activity measured at day 14. Of note, lung mean standardized uptake values correlated with bleomycin doses, histologic score of fibrosis, lung hydroxyproline content, and weight loss. Moreover, during the inflammatory phase of the model (day 7), but not the fibrotic phase (day 23), bleomycin-treated mice presented with an enhanced leukocyte recruitment as assessed by (18)F-FBEM-labeled leukocyte PET/CT. Autoradiographic analysis of lung sections and CD45 immunostaining confirm the higher and early recruitment of leukocytes in bleomycin-treated mice, compared with control mice. CONCLUSION: (18)F-FDG- and (18)F-FBEM-labeled leukocyte PET/CT enable monitoring of metabolic activity and leukocyte recruitment in a mouse model of pulmonary fibrosis. Implications for preclinical evaluation of antifibrotic therapy are expected.


Assuntos
Fluordesoxiglucose F18 , Leucócitos/imunologia , Leucócitos/metabolismo , Maleimidas , Tomografia por Emissão de Pósitrons , Fibrose Pulmonar/metabolismo , Tomografia Computadorizada por Raios X , Animais , Transporte Biológico/efeitos dos fármacos , Bleomicina/efeitos adversos , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Fibrose , Fluordesoxiglucose F18/metabolismo , Leucócitos/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Maleimidas/metabolismo , Camundongos , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Coloração e Rotulagem
17.
Part Fibre Toxicol ; 11: 67, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25497478

RESUMO

BACKGROUND: Ge-imogolites are short aluminogermanate tubular nanomaterials with attractive prospected industrial applications. In view of their nano-scale dimensions and high aspect ratio, they should be examined for their potential to cause respiratory toxicity. Here, we evaluated the respiratory biopersistence and lung toxicity of 2 samples of nanometer-long Ge-imogolites. METHODS: Rats were intra-tracheally instilled with single wall (SW, 70 nm length) or double wall (DW, 62 nm length) Ge-imogolites (0.02-2 mg/rat), as well as with crocidolite and the hard metal particles WC-Co, as positive controls. The biopersistence of Ge-imogolites and their localization in the lung were assessed by ICP-MS, X-ray fluorescence, absorption spectroscopy and computed micro-tomography. Acute inflammation and genotoxicity (micronuclei in isolated type II pneumocytes) was assessed 3 d post-exposure; chronic inflammation and fibrosis after 2 m. RESULTS: Cytotoxic and inflammatory responses were shown in bronchoalveolar lavage 3 d after instillation with Ge-imogolites. Sixty days after exposure, a persistent dose-dependent inflammation was still observed. Total lung collagen, reflected by hydroxyproline lung content, was increased after SW and DW Ge-imogolites. Histology revealed lung fibre reorganization and accumulation in granulomas with epithelioid cells and foamy macrophages and thickening of the alveolar walls. Overall, the inflammatory and fibrotic responses induced by SW and DW Ge-imogolites were more severe (on a mass dose basis) than those induced by crocidolite. A persistent fraction of Ge-imogolites (15% of initial dose) was mostly detected as intact structures in rat lungs 2 m after instillation and was localized in fibrotic alveolar areas. In vivo induction of micronuclei was significantly increased 3 d after SW and DW Ge-imogolite instillation at non-inflammatory doses, indicating the contribution of primary genotoxicity. CONCLUSIONS: We showed that nm-long Ge-imogolites persist in the lung and promote genotoxicity, sustained inflammation and fibrosis, indicating that short high aspect ratio nanomaterials should not be considered as innocuous materials. Our data also suggest that Ge-imogolite structure and external surface determine their toxic activity.


Assuntos
Silicatos de Alumínio/toxicidade , Germânio/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Pneumonia/induzido quimicamente , Fibrose Pulmonar/etiologia , Poluentes Atmosféricos/química , Poluentes Atmosféricos/toxicidade , Silicatos de Alumínio/administração & dosagem , Silicatos de Alumínio/química , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Germânio/administração & dosagem , Germânio/química , Pulmão/imunologia , Pulmão/patologia , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Nanotubos/química , Nanotubos/toxicidade , Tamanho da Partícula , Pneumonia/imunologia , Pneumonia/patologia , Ratos Wistar , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Absorção pelo Trato Respiratório , Distribuição Tecidual , Testes de Toxicidade Aguda , Toxicocinética
18.
Part Fibre Toxicol ; 11: 69, 2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25497724

RESUMO

BACKGROUND: Inflammasome-activated IL-1ß plays a major role in lung neutrophilic inflammation induced by inhaled silica. However, the exact mechanisms that contribute to the initial production of precursor IL-1ß (pro-IL-1ß) are still unclear. Here, we assessed the implication of alarmins (IL-1α, IL-33 and HMGB1) in the lung response to silica particles and found that IL-1α is a master cytokine that regulates IL-1ß expression. METHODS: Pro- and mature IL-1ß as well as alarmins were assessed by ELISA, Western Blot or qRT-PCR in macrophage cultures and in mouse lung following nano- and micrometric silica exposure. Implication of these immune mediators in the establishment of lung inflammatory responses to silica was investigated in knock-out mice or after antibody blockade by evaluating pulmonary neutrophil counts, CXCR2 expression and degree of histological injury. RESULTS: We found that the early release of IL-1α and IL-33, but not HMGB1 in alveolar space preceded the lung expression of pro-IL-1ß and neutrophilic inflammation in silica-treated mice. In vitro, the production of pro-IL-1ß by alveolar macrophages was significantly induced by recombinant IL-1α but not by IL-33. Neutralization or deletion of IL-1α reduced IL-1ß production and neutrophil accumulation after silica in mice. Finally, IL-1α released by J774 macrophages after in vitro exposure to a range of micro- and nanoparticles of silica was correlated with the degree of lung inflammation induced in vivo by these particles. CONCLUSIONS: We demonstrated that in response to silica exposure, IL-1α is rapidly released from pre-existing stocks in alveolar macrophages and promotes subsequent lung inflammation through the stimulation of IL-1ß production. Moreover, we demonstrated that in vitro IL-1α release from macrophages can be used to predict the acute inflammogenic activity of silica micro- and nanoparticles.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Interleucina-1alfa/metabolismo , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Pneumonia/induzido quimicamente , Dióxido de Silício/toxicidade , Poluentes Atmosféricos/química , Animais , Anticorpos Neutralizantes/metabolismo , Linhagem Celular , Células Cultivadas , Feminino , Interleucina-1alfa/antagonistas & inibidores , Interleucina-1alfa/genética , Interleucina-1beta/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microesferas , Nanopartículas/administração & dosagem , Nanopartículas/química , Infiltração de Neutrófilos/efeitos dos fármacos , Tamanho da Partícula , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química , Testes de Toxicidade Aguda
19.
PLoS One ; 9(7): e99383, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25050810

RESUMO

The exact implication of innate immunity in granuloma formation and irreversible lung fibrosis remains to be determined. In this study, we examined the lung inflammatory and fibrotic responses to silica in MyD88-knockout (KO) mice. In comparison to wild-type (WT) mice, we found that MyD88-KO animals developed attenuated lung inflammation, neutrophil accumulation and IL-1ß release in response to silica. Granuloma formation was also less pronounced in MyD88-KO mice after silica. This limited inflammatory response was not accompanied by a concomitant attenuation of lung collagen accumulation after silica. Histological analyses revealed that while pulmonary fibrosis was localized in granulomas in WT animals, it was diffusely distributed throughout the parenchyma in MyD88-KO mice. Robust collagen accumulation was also observed in mice KO for several other components of innate immunity (IL-1R, IL-1, ASC, NALP3, IL-18R, IL-33R, TRIF, and TLR2-3-4,). We additionally show that pulmonary fibrosis in MyD88-KO mice was associated with the accumulation of pro-fibrotic regulatory T lymphocytes (T regs) and pro-fibrotic cytokine expression (TGF-ß, IL-10 and PDGF-B), not with T helper (Th) 17 cell influx. Our findings indicate that the activation of MyD88-related innate immunity is central in the establishment of particle-induced lung inflammatory and granuloma responses. The development of lung fibrosis appears uncoupled from inflammation and may be orchestrated by a T reg-associated pathway.


Assuntos
Inflamação/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Fibrose Pulmonar/imunologia , Dióxido de Silício/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Citometria de Fluxo , Granuloma/genética , Granuloma/imunologia , Granuloma/metabolismo , Imunidade Inata/genética , Imunidade Inata/imunologia , Imuno-Histoquímica , Inflamação/induzido quimicamente , Inflamação/genética , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1alfa/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Dióxido de Silício/toxicidade , Silicose/etiologia , Silicose/genética , Silicose/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
20.
Am J Respir Cell Mol Biol ; 50(1): 212-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24003988

RESUMO

Acute lung injury (ALI) can be accompanied by secondary systemic manifestations. In a model of ALI induced by bleomycin (bleo), we examined the response of D prostanoid receptor 1 (DP1)-deficient mice (DP1(-/-)) to better understand these processes. DP1 deficiency aggravated the toxicity of bleo as indicated by enhanced body weight loss, mortality, and lung inflammation including bronchoalveolar permeability and neutrophilia. Thymic atrophy was also observed after bleo and was strongly exacerbated in DP1(-/-) mice. This resulted from the enhanced depletion of immature T lymphocytes in the thymus of DP1(-/-) mice, a phenomenon usually related to increased glucocorticoid release in blood. Serum corticosterone was more elevated in DP1(-/-) mice after bleo than in wild-type (wt) mice. Thymocytes of DP1(-/-) mice were not more sensitive to dexamethasone in vitro, and systemic delivery of dexamethasone or peritoneal inflammation after LPS induced a similar thymic atrophy in wt and DP1(-/-) mice, indicating that pulmonary DP1 was critical to the control of thymic atrophy after bleo. DP1(-/-) mice showed increased lung and/or blood mediators involved in neutrophil recruitment and/or glucocorticoid production/thymic atrophy (osteopontin, leukemia inhibitory factor, and keratinocyte-derived chemokine) after bleo. Finally, local pulmonary DP1 activation or inhibition in wt mice abrogated or amplified thymic atrophy after bleo, respectively. Altogether, our data reveal that ALI can perturb the systemic T-cell pool by inducing thymic atrophy and that both pathological processes are controlled by the pulmonary DP1 receptor. This new pathway represents a potential therapeutic target in ALI.


Assuntos
Atrofia/metabolismo , Atrofia/patologia , Pneumonia/metabolismo , Pneumonia/patologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Timo/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Atrofia/induzido quimicamente , Atrofia/genética , Bleomicina/efeitos adversos , Líquido da Lavagem Broncoalveolar , Corticosterona/sangue , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Neutrófilos/patologia , Permeabilidade , Pneumonia/induzido quimicamente , Pneumonia/genética , Receptores Imunológicos/deficiência , Receptores de Prostaglandina/deficiência , Linfócitos T/metabolismo , Linfócitos T/patologia , Timócitos/metabolismo , Timócitos/fisiologia , Timo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA