Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719474

RESUMO

DNA topoisomerase IIα (TOP2α, 170kDa, TOP2α/170) is an essential enzyme for proper chromosome dysjunction by producing transient DNA double-stranded breaks and is a significant target for DNA damage stabilizing anti-cancer agents such as etoposide. Therapeutic effects of TOP2α poisons can be limited due to acquired drug resistance. We previously demonstrated decreased TOP2α/170 levels in an etoposide-resistant human leukemia K562 subline, designated K/VP.5, accompanied by increased expression of a C-terminal truncated TOP2α isoform (90 kDa, TOP2α/90) which heterodimerized with TOP2α/170 and was a determinant of resistance by exhibiting dominant-negative effects against etoposide activity. Based on 3'-Rapid Amplification of cDNA Ends (3'-RACE), we confirmed TOP2α/90 as the translation product of a TOP2α mRNA in which a cryptic polyadenylation site (PAS) harbored in intron 19 (I19) was utilized. We hypothesized that resultant intronic polyadenylation (IPA) can would be attenuated by blocking or mutating the I19 PAS thereby circumventing acquired drug resistance. An antisense morpholino oligonucleotide (AMO) was used to hybridize/block the PAS in TOP2α pre-mRNA in K/VP.5 cells, resulting in decreased TOP2α/90 mRNA/protein levels in K/VP.5 cells and partially circumventing drug resistance. Subsequently, CRISPR/Cas9 homology-directed repair (HDR) was used to mutate the cryptic I19 PAS (AATAAA-->ACCCAA) to prevent IPA. Gene-edited clones exhibited increased TOP2α/170 and decreased TOP2α/90 mRNA/protein and demonstrated restored sensitivity to etoposide and other TOP2α-targeted drugs. Together, results indicated that blocking/mutating a cryptic I19 PAS in K/VP.5 cells reduced IPA and restored sensitivity to TOP2α-targeting drugs. Significance Statement Results presented here indicate that CRISPR/Cas9 gene editing of a cryptic polyadenylation site (PAS) within I19 of the TOP2α gene results in reversal of acquired resistance to etoposide and other TOP2-targeted drugs. An antisense morpholino oligonucleotide (AMO) targeting the PAS also partially circumvented resistance. Results demonstrate the importance of intronic polyadenylation (IPA) in acquired drug resistance and points to tractable strategies to overcome this form of resistance to TOP2-targeted agents.

2.
J Pharmacol Exp Ther ; 389(2): 186-196, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508753

RESUMO

DNA topoisomerase IIß (TOP2ß/180; 180 kDa) is a nuclear enzyme that regulates DNA topology by generation of short-lived DNA double-strand breaks, primarily during transcription. TOP2ß/180 can be a target for DNA damage-stabilizing anticancer drugs, whose efficacy is often limited by chemoresistance. Our laboratory previously demonstrated reduced levels of TOP2ß/180 (and the paralog TOP2α/170) in an acquired etoposide-resistant human leukemia (K562) clonal cell line, K/VP.5, in part due to overexpression of microRNA-9-3p/5p impacting post-transcriptional events. To evaluate the effect on drug sensitivity upon reduction/elimination of TOP2ß/180, a premature stop codon was generated at the TOP2ß/180 gene exon 19/intron 19 boundary (AGAA//GTAA→ATAG//GTAA) in parental K562 cells (which contain four TOP2ß/180 alleles) by CRISPR/Cas9 editing with homology-directed repair to disrupt production of full-length TOP2ß/180. Gene-edited clones were identified and verified by quantitative polymerase chain reaction and Sanger sequencing, respectively. Characterization of TOP2ß/180 gene-edited clones, with one or all four TOP2ß/180 alleles mutated, revealed partial or complete loss of TOP2ß mRNA/protein, respectively. The loss of TOP2ß/180 protein correlated with decreased (2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid)-induced DNA damage and partial resistance in growth inhibition assays. Partial resistance to mitoxantrone was also noted in the gene-edited clone with all four TOP2ß/180 alleles modified. No cross-resistance to etoposide or mAMSA was noted in the gene-edited clones. Results demonstrated the role of TOP2ß/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents. SIGNIFICANCE STATEMENT: Data indicated that CRISPR/Cas9 editing of the exon 19/intron 19 boundary in the TOP2ß/180 gene to introduce a premature stop codon resulted in partial to complete disruption of TOP2ß/180 expression in human leukemia (K562) cells depending on the number of edited alleles. Edited clones were partially resistant to mitoxantrone and XK469, while lacking resistance to etoposide and mAMSA. Results demonstrated the import of TOP2ß/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents.


Assuntos
Antineoplásicos , Leucemia , Humanos , Etoposídeo/farmacologia , Células K562 , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Mitoxantrona , Sistemas CRISPR-Cas/genética , Códon sem Sentido , Antineoplásicos/farmacologia , DNA , Fenótipo
3.
Antimicrob Agents Chemother ; 67(10): e0048223, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37724886

RESUMO

Antimicrobial resistance has made a sizeable impact on public health and continues to threaten the effectiveness of antibacterial therapies. Novel bacterial topoisomerase inhibitors (NBTIs) are a promising class of antibacterial agents with a unique binding mode and distinct pharmacology that enables them to evade existing resistance mechanisms. The clinical development of NBTIs has been plagued by several issues, including cardiovascular safety. Herein, we report a sub-series of tricyclic NBTIs bearing an amide linkage that displays promising antibacterial activity, potent dual-target inhibition of DNA gyrase and topoisomerase IV (TopoIV), as well as improved cardiovascular safety and metabolic profiles. These amide NBTIs induced both single- and double-strand breaks in pBR322 DNA mediated by Staphylococcus aureus DNA gyrase, in contrast to prototypical NBTIs that cause only single-strand breaks. Unexpectedly, amides 1a and 1b targeted human topoisomerase IIα (TOP2α) causing both single- and double-strand breaks in pBR322 DNA, and induced DNA strand breaks in intact human leukemia K562 cells. In addition, anticancer drug-resistant K/VP.5 cells containing decreased levels of TOP2α were cross-resistant to amides 1a and 1b. Together, these results demonstrate broad spectrum antibacterial properties of selected tricyclic NBTIs, desirable safety profiles, an unusual ability to induce DNA double-stranded breaks, and activity against human TOP2α. Future work will be directed toward optimization and development of tricyclic NBTIs with potent and selective activity against bacteria. Finally, the current results may provide an additional avenue for development of selective anticancer agents.


Assuntos
DNA Girase , Inibidores da Topoisomerase , Humanos , Inibidores da Topoisomerase/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/metabolismo , DNA , Amidas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Testes de Sensibilidade Microbiana
4.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569485

RESUMO

Novel bacterial topoisomerase inhibitors (NBTIs) are an emerging class of antibacterials that target gyrase and topoisomerase IV. A hallmark of NBTIs is their ability to induce gyrase/topoisomerase IV-mediated single-stranded DNA breaks and suppress the generation of double-stranded breaks. However, a previous study reported that some dioxane-linked amide NBTIs induced double-stranded DNA breaks mediated by Staphylococcus aureus gyrase. To further explore the ability of this NBTI subclass to increase double-stranded DNA breaks, we examined the effects of OSUAB-185 on DNA cleavage mediated by Neisseria gonorrhoeae gyrase and topoisomerase IV. OSUAB-185 induced single-stranded and suppressed double-stranded DNA breaks mediated by N. gonorrhoeae gyrase. However, the compound stabilized both single- and double-stranded DNA breaks mediated by topoisomerase IV. The induction of double-stranded breaks does not appear to correlate with the binding of a second OSUAB-185 molecule and extends to fluoroquinolone-resistant N. gonorrhoeae topoisomerase IV, as well as type II enzymes from other bacteria and humans. The double-stranded DNA cleavage activity of OSUAB-185 and other dioxane-linked NBTIs represents a paradigm shift in a hallmark characteristic of NBTIs and suggests that some members of this subclass may have alternative binding motifs in the cleavage complex.


Assuntos
DNA Topoisomerase IV , Neisseria gonorrhoeae , Humanos , DNA Girase/metabolismo , Quebras de DNA de Cadeia Dupla , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química
5.
J Pharmacol Exp Ther ; 384(2): 265-276, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36410793

RESUMO

DNA topoisomerase IIα (TOP2α/170; 170 kDa) and topoisomerase IIß (TOP2ß/180; 180 kDa) are targets for a number of anticancer drugs, whose clinical efficacy is attenuated by chemoresistance. Our laboratory selected for an etoposide-resistant K562 clonal subline designated K/VP.5. These cells exhibited decreased TOP2α/170 and TOP2ß/180 expression. We previously demonstrated that a microRNA-9 (miR-9)-mediated posttranscriptional mechanism plays a role in drug resistance via reduced TOP2α/170 protein in K/VP.5 cells. Here, it is hypothesized that a similar miR-9 mechanism is responsible for decreased TOP2ß/180 levels in K/VP.5 cells. Both miR-9-3p and miR-9-5p are overexpressed in K/VP.5 compared with K562 cells, demonstrated by microRNA (miRNA) sequencing and quantitative polymerase chain reaction. The 3'-untranslated region (3'-UTR) of TOP2ß/180 contains miRNA recognition elements (MRE) for both miRNAs. Cotransfection of K562 cells with a luciferase reporter plasmid harboring TOP2ß/180 3'-UTR plus miR-9-3p or miR-9-5p mimics resulted in statistically significant decreased luciferase expression. miR-9-3p and miR-9-5p MRE mutations prevented this decrease, validating direct interaction between these miRNAs and TOP2ß/180 mRNA. Transfection of K562 cells with miR-9-3p/5p mimics led to decreased TOP2ß protein levels without a change in TOP2ß/180 mRNA and resulted in reduced TOP2ß-specific XK469-induced DNA damage. Conversely, K/VP.5 cells transfected with miR-9-3p/5p inhibitors led to increased TOP2ß/180 protein without a change in TOP2ß/180 mRNA and resulted in enhancement of XK469-induced DNA damage. Taken together, these results strongly suggest that TOP2ß/180 mRNA is translationally repressed by miR-9-3p/5p, that these miRNAs play a role in acquired resistance to etoposide, and that they are potential targets for circumvention of resistance to TOP2-targeted agents. SIGNIFICANCE STATEMENT: Results presented here indicate that miR-9-3p and miR-9-5p play a role in acquired resistance to etoposide via decreased DNA topoisomerase IIß 180 kDa protein levels. These findings contribute further information about and potential strategies for circumvention of drug resistance by modulation of microRNA levels. In addition, miR-9-3p and miR-9-5p overexpression in cancer chemoresistance may lead to future validation as biomarkers of responsiveness to DNA topoisomerase II-targeted therapy.


Assuntos
Antineoplásicos , Leucemia , MicroRNAs , Humanos , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/farmacologia , Células K562 , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro
6.
Cancers (Basel) ; 14(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35804920

RESUMO

Intronic polyadenylation (IPA) plays a critical role in malignant transformation, development, progression, and cancer chemoresistance by contributing to transcriptome/proteome alterations. DNA topoisomerase IIα (170 kDa, TOP2α/170) is an established clinical target for anticancer agents whose efficacy is compromised by drug resistance often associated with a reduction of nuclear TOP2α/170 levels. In leukemia cell lines with acquired resistance to TOP2α-targeted drugs and reduced TOP2α/170 expression, variant TOP2α mRNA transcripts have been reported due to IPA that resulted in the translation of C-terminal truncated isoforms with altered nuclear-cytoplasmic distribution or heterodimerization with wild-type TOP2α/170. This review provides an overview of the various mechanisms regulating pre-mRNA processing and alternative polyadenylation, as well as the utilization of CRISPR/Cas9 specific gene editing through homology directed repair (HDR) to decrease IPA when splice sites are intrinsically weak or potentially mutated. The specific case of TOP2α exon 19/intron 19 splice site editing is discussed in etoposide-resistant human leukemia K562 cells as a tractable strategy to circumvent acquired TOP2α-mediated drug resistance. This example supports the importance of aberrant IPA in acquired drug resistance to TOP2α-targeted drugs. In addition, these results demonstrate the therapeutic potential of CRISPR/Cas9/HDR to impact drug resistance associated with aberrant splicing/polyadenylation.

7.
ACS Med Chem Lett ; 13(6): 955-963, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35707162

RESUMO

Antibacterial resistance continues its devastation of available therapies. Novel bacterial topoisomerase inhibitors (NBTIs) offer one solution to this critical issue. Two series of amine NBTIs bearing tricyclic DNA-binding moieties as well as amide NBTIs with a bicyclic DNA-binding moiety were synthesized and evaluated against methicillin-resistant Staphylococcus aureus (MRSA). Additionally, these compounds and a series of bicyclic amine analogues displayed high activity against susceptible and drug-resistant Neisseria gonorrhoeae, expanding the spectrum of these dioxane-linked NBTIs.

8.
PLoS One ; 17(5): e0265794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617303

RESUMO

DNA Topoisomerase IIα (TOP2α/170) is an enzyme essential for proliferating cells. For rapidly multiplying malignancies, this has made TOP2α/170 an important target for etoposide and other clinically active anticancer drugs. Efficacy of these agents is often limited by chemoresistance related to alterations in TOP2α/170 expression levels. Our laboratory recently demonstrated reduced levels of TOP2α/170 and overexpression of a C-terminal truncated 90-kDa isoform, TOP2α/90, due to intronic polyadenylation (IPA; within intron 19) in an acquired etoposide-resistant K562 clonal cell line, K/VP.5. We previously reported that this isoform heterodimerized with TOP2α/170 and was a determinant of acquired resistance to etoposide. Optimization of the weak TOP2α exon 19/intron 19 5' splice site in drug-resistant K/VP.5 cells by gene-editing restored TOP2α/170 levels, diminished TOP2α/90 expression, and circumvented drug resistance. Conversely, in the present study, silencing of the exon 19/intron 19 5' splice site in parental K562 cells by CRISPR/Cas9 with homology-directed repair (HDR), and thereby forcing intron 19 retention, was used to induce resistance by disrupting normal RNA processing (i.e., gene knockout), and to further evaluate the role of TOP2α/170 and TOP2α/90 isoforms as resistance determinants. Gene-edited clones were identified by quantitative polymerase chain reaction (qPCR) and verified by Sanger sequencing. TOP2α/170 mRNA/protein expression levels were attenuated in the TOP2α gene-edited clones which resulted in resistance to etoposide as assessed by reduced etoposide-induced DNA damage (γH2AX, Comet assays) and growth inhibition. RNA-seq and qPCR studies suggested that intron 19 retention leads to decreased TOP2α/170 expression by degradation of the TOP2α edited mRNA transcripts. Forced expression of TOP2α/90 in the gene-edited K562 cells further decreased etoposide-induced DNA damage in support of a dominant negative role for this truncated isoform. Together results support the important role of both TOP2α/170 and TOP2α/90 as determinants of sensitivity/resistance to TOP2α-targeting agents.


Assuntos
Leucemia , Sítios de Splice de RNA , Antígenos de Neoplasias/genética , Sistemas CRISPR-Cas/genética , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/farmacologia , Humanos , Íntrons/genética , Células K562 , Leucemia/genética , RNA Mensageiro
9.
J Nat Prod ; 85(3): 702-719, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213158

RESUMO

Research progress from mainly over the last five years is described for a multidisciplinary collaborative program project directed toward the discovery of potential anticancer agents from a broad range of taxonomically defined organisms. Selected lead compounds with potential as new antitumor agents that are representative of considerable structural diversity have continued to be obtained from each of tropical plants, terrestrial and aquatic cyanobacteria, and filamentous fungi. Recently, a new focus has been on the investigation of the constituents of U.S. lichens and their fungal mycobionts. A medicinal chemistry and pharmacokinetics component of the project has optimized structurally selected lead natural products, leading to enhanced cytotoxic potencies against selected cancer cell lines. Biological testing has shown several compounds to have in vivo activity, and relevant preliminary structure-activity relationship and mechanism of action studies have been performed. Several promising lead compounds worthy of further investigation have been identified from the most recent collaborative work performed.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Antineoplásicos/química , Produtos Biológicos/química , Humanos , Neoplasias/tratamento farmacológico , Plantas/química , Relação Estrutura-Atividade
10.
Mol Pharmacol ; 99(3): 226-241, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33446509

RESUMO

An essential function of DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is to resolve DNA topologic entanglements during chromosome disjunction by introducing transient DNA double-stranded breaks. TOP2α/170 is an important target for DNA damage-stabilizing anticancer drugs, whose clinical efficacy is compromised by drug resistance often associated with decreased TOP2α/170 expression. We recently demonstrated that an etoposide-resistant K562 clonal subline, K/VP.5, with reduced levels of TOP2α/170, expresses high levels of a novel C-terminal truncated TOP2α isoform (90 kDa, TOP2α/90). TOP2α/90, the translation product of a TOP2α mRNA that retains a processed intron 19 (I19), heterodimerizes with TOP2α/170 and is a resistance determinant through a dominant-negative effect on drug activity. We hypothesized that genome editing to enhance I19 removal would provide a tractable strategy to circumvent acquired TOP2α-mediated drug resistance. To enhance I19 removal in K/VP.5 cells, CRISPR/Cas9 was used to make changes (GAG//GTAA AC →GAG//GTAA GT ) in the TOP2α gene's suboptimal exon 19/intron 19 5' splice site (E19/I19 5' SS). Gene-edited clones were identified by quantitative polymerase chain reaction and verified by sequencing. Characterization of a clone with all TOP2α alleles edited revealed improved I19 removal, decreased TOP2α/90 mRNA/protein, and increased TOP2α/170 mRNA/protein. Sensitivity to etoposide-induced DNA damage (γH2AX, Comet assays) and growth inhibition was restored to levels comparable to those in parental K562 cells. Together, the results indicate that our gene-editing strategy for optimizing the TOP2α E19/I19 5' SS in K/VP.5 cells circumvents resistance to etoposide and other TOP2α-targeted drugs. SIGNIFICANCE STATEMENT: Results presented here indicate that CRISPR/Cas9 gene editing of a suboptimal exon 19/intron 19 5' splice site in the DNA topoisomerase IIα (TOP2α) gene results in circumvention of acquired drug resistance to etoposide and other TOP2α-targeted drugs in a clonal K562 cell line by enhancing removal of intron 19 and thereby decreasing formation of a truncated TOP2α 90 kDa isoform and increasing expression of full-length TOP2α 170 kDa in these resistant cells. Results demonstrate the importance of RNA processing in acquired drug resistance to TOP2α-targeted drugs.


Assuntos
DNA Topoisomerases Tipo II/genética , Regulação para Baixo , Etoposídeo/farmacologia , Edição de Genes/métodos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Sistemas CRISPR-Cas , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Humanos , Íntrons , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Sítios de Splice de RNA
11.
Cancer Drug Resist ; 3(2): 161-170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566920

RESUMO

DNA topoisomerase IIα (170 kDa, TOP2α/170) induces transient DNA double-strand breaks in proliferating cells to resolve DNA topological entanglements during chromosome condensation, replication, and segregation. Therefore, TOP2α/170 is a prominent target for anticancer drugs whose clinical efficacy is often compromised due to chemoresistance. Although many resistance mechanisms have been defined, acquired resistance of human cancer cell lines to TOP2α interfacial inhibitors/poisons is frequently associated with a reduction of Top2α/170 expression levels. Recent studies by our laboratory, in conjunction with earlier findings by other investigators, support the hypothesis that a major mechanism of acquired resistance to TOP2α-targeted drugs is due to alternative RNA processing/splicing. Specifically, several TOP2α mRNA splice variants have been reported which retain introns and are translated into truncated TOP2α isoforms lacking nuclear localization sequences and subsequent dysregulated nuclear-cytoplasmic disposition. In addition, intron retention can lead to truncated isoforms that lack both nuclear localization sequences and the active site tyrosine (Tyr805) necessary for forming enzyme-DNA covalent complexes and inducing DNA damage in the presence of TOP2α-targeted drugs. Ultimately, these truncated TOP2α isoforms result in decreased drug activity against TOP2α in the nucleus and manifest drug resistance. Therefore, the complete characterization of the mechanism(s) regulating the alternative RNA processing of TOP2α pre-mRNA may result in new strategies to circumvent acquired drug resistance. Additionally, novel TOP2α splice variants and truncated TOP2α isoforms may be useful as biomarkers for drug resistance, prognosis, and/or direct future TOP2α-targeted therapies.

12.
Eur J Med Chem ; 199: 112324, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32402932

RESUMO

A series of Novel Bacterial Topoisomerase Inhibitors (NBTIs) employing a linker derived from isomannide were synthesized and evaluated. Reduced hERG inhibition was observed compared to structure-matched analogues with different linkers, and compound 6 showed minimal proarrhythmic potential using an in vitro panel of cardiac ion channels. Compound 6 also displayed excellent activity against fluoroquinolone-resistant MRSA (MIC90 = 2 µg/mL) and other Gram-positive pathogens.


Assuntos
Antibacterianos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Inibidores da Topoisomerase/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/química
13.
Mol Pharmacol ; 97(3): 159-170, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31836624

RESUMO

DNA topoisomerase IIα protein (TOP2α) 170 kDa (TOP2α/170) is an important target for anticancer agents whose efficacy is often attenuated by chemoresistance. Our laboratory has characterized acquired resistance to etoposide in human leukemia K562 cells. The clonal resistant subline K/VP.5 contains reduced TOP2α/170 mRNA and protein levels compared with parental K562 cells. The aim of this study was to determine whether microRNA (miRNA)-mediated mechanisms play a role in drug resistance via decreased expression of TOP2α/170. miRNA-sequencing revealed that human miR-9-3p and miR-9-5p were among the top six of those overexpressed in K/VP.5 compared with K562 cells; validation by quantitative polymerase chain reaction demonstrated overexpression of both miRNAs. miRNA recognition elements (MREs) for both miRNAs are present in the 3'-untranslated region (UTR) of TOP2α/170. Transfecting K562 cells with a reporter plasmid harboring the TOP2α/170 3'-UTR together with either miR-9-3p or miR-9-5p mimics resulted in a statistically significant decrease in luciferase expression. Mutating the miR-9-3p or miR-9-5p MREs prevented this decrease, demonstrating direct interaction between these miRNAs and TOP2α/170 mRNA. Transfection of K562 cells with miR-9-3p or miR-9-5p mimics led to decreased TOP2α/170 protein levels without a change in TOP2α/170 mRNA and resulted in attenuated etoposide-induced DNA damage (gain-of-miRNA-inhibitory function). Conversely, transfection of miR-9-3p or miR-9-5p inhibitors in K/VP.5 cells (overexpressed miR-9 and low TOP2α/170) led to increased TOP2α/170 protein expression without a change in TOP2α/170 mRNA levels and resulted in enhancement of etoposide-induced DNA damage (loss-of-miRNA-inhibitory function). Taken together, these results strongly suggest that these miRNAs play a role in and are potential targets for circumvention of acquired resistance to etoposide. SIGNIFICANCE STATEMENT: Results presented here indicate that miR-9-3p and miR-9-5p decrease DNA topoisomerase IIα protein 170 kDa expression levels in acquired resistance to etoposide. These findings contribute new information about and potential strategies for circumvention of drug resistance by modulation of microRNA levels. Furthermore, increased expression of miR-9-3p and miR-9-5p in chemoresistant cancer cells may support their validation as biomarkers of responsiveness to DNA topoisomerase II-targeted therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , DNA Topoisomerases Tipo II/biossíntese , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Etoposídeo/farmacologia , MicroRNAs/biossíntese , DNA Topoisomerases Tipo II/genética , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Células K562 , MicroRNAs/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia
14.
ACS Infect Dis ; 5(7): 1115-1128, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31041863

RESUMO

The development of new therapies to treat methicillin-resistant Staphylococcus aureus (MRSA) is needed to counteract the significant threat that MRSA presents to human health. Novel inhibitors of DNA gyrase and topoisomerase IV (TopoIV) constitute one highly promising approach, but continued optimization is required to realize the full potential of this class of antibiotics. Herein, we report further studies on a series of dioxane-linked derivatives, demonstrating improved antistaphylococcal activity and reduced hERG inhibition. A subseries of analogues also possesses enhanced inhibition of the secondary target, TopoIV.


Assuntos
Antibacterianos/síntese química , DNA Girase/metabolismo , Dioxanos/química , Staphylococcus aureus Resistente à Meticilina/enzimologia , Inibidores da Topoisomerase/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , DNA Girase/química , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química , DNA Topoisomerase IV/metabolismo , Regulação para Baixo , Canal de Potássio ERG1/metabolismo , Humanos , Células K562 , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/farmacologia
15.
Bioorg Med Chem Lett ; 28(14): 2477-2480, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29871847
16.
Bioorg Med Chem ; 26(9): 2354-2364, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29656990

RESUMO

A series of arylnaphthalene lignan lactones based on the structure of the phyllanthusmins, a class of potent natural products possessing diphyllin as the aglycone, has been synthesized and screened for activity against multiple cancer cell lines. SAR exploration was performed on both the carbohydrate and lactone moieties of this structural class. These studies have revealed the importance of functionalization of the carbohydrate hydroxy groups with both acetylated and methylated analogues showing increased potency relative to those with unsubstituted sugar moieties. In addition, the requirement for the presence and position of the C-ring lactone has been demonstrated through reduction and selective re-oxidation of the lactone ring. The most potent compound in this study displayed an IC50 value of 18 nM in an HT-29 assay with several others ranging from 50 to 200 nM. In an effort to elucidate their potential mechanism(s) of action, the DNA topoisomerase IIa inhibitory activity of the most potent compounds was examined based on previous reports of structurally similar compounds, but does not appear to contribute significantly to their antiproliferative effects.


Assuntos
Antineoplásicos/farmacologia , Glicosídeos/farmacologia , Lactonas/farmacologia , Lignanas/farmacologia , Naftalenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzodioxóis/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Etoposídeo/farmacologia , Glicosídeos/síntese química , Glicosídeos/química , Humanos , Lactonas/síntese química , Lactonas/química , Lignanas/síntese química , Lignanas/química , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Estereoisomerismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia
17.
Mol Pharmacol ; 93(5): 515-525, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29514855

RESUMO

DNA topoisomerase IIα (170 kDa, TOP2α/170) is essential in proliferating cells by resolving DNA topological entanglements during chromosome condensation, replication, and segregation. We previously characterized a C-terminally truncated isoform (TOP2α/90), detectable in human leukemia K562 cells but more abundantly expressed in a clonal subline, K/VP.5, with acquired resistance to the anticancer agent etoposide. TOP2α/90 (786 aa) is the translation product of a TOP2α mRNA that retains a processed intron 19. TOP2α/90 lacks the active-site tyrosine-805 required to generate double-strand DNA breaks as well as nuclear localization signals present in the TOP2α/170 isoform (1531 aa). Here, we found that TOP2α/90, like TOP2α/170, was detectable in the nucleus and cytoplasm of K562 and K/VP.5 cells. Coimmunoprecipitation of endogenous TOP2α/90 and TOP2α/170 demonstrated heterodimerization of these isoforms. Forced expression of TOP2α/90 in K562 cells suppressed, whereas siRNA-mediated knockdown of TOP2α/90 in K/VP.5 cells enhanced, etoposide-mediated DNA strand breaks compared with similarly treated cells transfected with empty vector or control siRNAs, respectively. In addition, forced expression of TOP2α/90 in K562 cells inhibited etoposide cytotoxicity assessed by clonogenic assays. qPCR and immunoassays demonstrated TOP2α/90 mRNA and protein expression in normal human tissues/cells and in leukemia cells from patients. Together, results strongly suggest that TOP2α/90 expression decreases drug-induced TOP2α-DNA covalent complexes and is a determinant of chemoresistance through a dominant-negative effect related to heterodimerization with TOP2α/170. Alternative processing of TOP2α pre-mRNA, and subsequent synthesis of TOP2α/90, may be an important mechanism regulating the formation and/or stability of cytotoxic TOP2α/170-DNA covalent complexes in response to TOP2α-targeting agents.


Assuntos
Antineoplásicos Alquilantes/farmacologia , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Resistencia a Medicamentos Antineoplásicos , Etoposídeo/farmacologia , Isoenzimas/química , Isoenzimas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular , Núcleo Celular/enzimologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , Dimerização , Etoposídeo/uso terapêutico , Humanos , Isoenzimas/genética , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Processamento Pós-Transcricional do RNA
18.
J Nat Prod ; 81(3): 625-629, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29406734

RESUMO

Capsicodendrin (CPCD, 1), an epimeric mixture of a dimeric drimane-type sesquiterpene, is one of the major compounds present in the three endemic species of Madagascan traditional chemopreventive plants: Cinnamosma species ( C. fragrans, C. macrocarpa, and C. madagascariensis). Despite the popular use of Cinnamosma in Madagascan traditional medicine and the reported antiproliferative properties of CPCD, elucidation of its mechanism(s) of action is still to be accomplished. In the present study, CPCD at low micromolar concentrations was cytotoxic and induced apoptosis in human myeloid leukemia cells in a time- and concentration-dependent manner. The activity of CPCD in HL-60 and K562 cells was modulated by glutathione (GSH), since depletion of this intracellular thiol-based antioxidant with buthionine sulfoximine resulted in significantly ( p < 0.05) greater potency in antiproliferation assays. GSH depletion also significantly potentiated the cytotoxic activity in CPCD-treated human HL-60 cells. Single-cell gel electrophoresis (Comet) assays revealed that GSH depletion in HL-60 cells enhanced the formation of DNA strand breaks in the presence of CPCD. Although CPCD does not contain an obvious Michael acceptor in its structure, 1H NMR analyses indicated that cinnamodial (2), a monomer of CPCD, was formed within a few hours when dissolved in DMSO- d6 and interacts with GSH to form a covalent bond via Michael addition at the C-7 carbon. Together the results strongly suggest that 2 is responsible for the DNA-damaging, pro-apoptotic, and cytotoxic effects of CPCD and that depletion of GSH enhances overall activity by diminishing covalent interaction between GSH and this 2-alkenal decomposition product of CPCD.


Assuntos
Glutationa/metabolismo , Leucemia Mieloide/tratamento farmacológico , Magnoliopsida/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Glutationa/antagonistas & inibidores , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Sesquiterpenos Policíclicos , Sesquiterpenos/isolamento & purificação
19.
J Pharmacol Exp Ther ; 360(1): 152-163, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27974648

RESUMO

DNA topoisomerase IIα (TOP2α) is a prominent target for anticancer drugs whose clinical efficacy is often limited by chemoresistance. Using antibody specific for the N-terminal of TOP2α, immunoassays indicated the existence of two TOP2α isoforms, 170 and 90 kDa, present in K562 leukemia cells and in an acquired etoposide (VP-16)-resistant clone (K/VP.5). TOP2α/90 expression was dramatically increased in etoposide-resistant K/VP.5 compared with parental K562 cells. We hypothesized that TOP2α/90 was the translation product of novel alternatively processed pre-mRNA, confirmed by 3'-rapid amplification of cDNA ends, polymerase chain reaction, and sequencing. TOP2α/90 mRNA includes retained intron 19, which harbors an in-frame stop codon, and two consensus poly(A) sites. The processed transcript is polyadenylated. TOP2α/90 mRNA encodes a 90,076-Da translation product missing the C-terminal 770 amino acids of TOP2α/170, replaced by 25 unique amino acids through translation of the exon 19/intron 19 read-through. Immunoassays, utilizing antisera raised against these unique amino acids, confirmed that TOP2α/90 is expressed in both cell types, with overexpression in K/VP.5 cells. Immunodetection of complex of enzyme-to-DNA and single-cell gel electrophoresis (Comet) assays demonstrated that K562 cells transfected with a TOP2α/90 expression plasmid exhibited reduced etoposide-mediated TOP2α-DNA covalent complexes and decreased etoposide-induced DNA damage, respectively, compared with similarly treated K562 cells transfected with empty vector. Because TOP2α/90 lacks the active site tyrosine (Tyr805) of full-length TOP2α, these results strongly suggest that TOP2α/90 exhibits dominant-negative properties. Further studies are underway to characterize the mechanism(s) by which TOP2α/90 plays a role in acquired resistance to etoposide and other TOP2α targeting agents.


Assuntos
Antígenos de Neoplasias/genética , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Íntrons/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Deleção de Sequência , Processamento Alternativo , Sequência de Aminoácidos , Antígenos de Neoplasias/química , Sequência de Bases , DNA Topoisomerases Tipo II/química , Proteínas de Ligação a DNA/química , Humanos , Isoenzimas/química , Isoenzimas/genética , Células K562 , Terapia de Alvo Molecular , Peso Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 310(5): L452-64, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637632

RESUMO

Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs.


Assuntos
Proteínas de Transporte/metabolismo , Cavéolas/metabolismo , Endocitose/fisiologia , Células Endoteliais/metabolismo , Pulmão/metabolismo , Animais , Apoptose/fisiologia , Morte Celular/fisiologia , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Pulmão/citologia , Proteínas de Membrana , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA