Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
FASEB J ; 38(7): e23608, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593315

RESUMO

Tooth development is a complex process involving various signaling pathways and genes. Recent findings suggest that ion channels and transporters, including the S100 family of calcium-binding proteins, may be involved in tooth formation. However, our knowledge in this regard is limited. Therefore, this study aimed to investigate the expression of S100 family members and their functions during tooth formation. Tooth germs were extracted from the embryonic and post-natal mice and the expression of S100a6 was examined. Additionally, the effects of S100a6 knockdown and calcium treatment on S100a6 expression and the proliferation of SF2 cells were examined. Microarrays and single-cell RNA-sequencing indicated that S100a6 was highly expressed in ameloblasts. Immunostaining of mouse tooth germs showed that S100a6 was expressed in ameloblasts but not in the undifferentiated dental epithelium. Additionally, S100a6 was localized to the calcification-forming side in enamel-forming ameloblasts. Moreover, siRNA-mediated S100a6 knockdown in ameloblasts reduced intracellular calcium concentration and the expression of ameloblast marker genes, indicating that S100a6 is associated with ameloblast differentiation. Furthermore, S100a6 knockdown inhibited the ERK/PI3K signaling pathway, suppressed ameloblast proliferation, and promoted the differentiation of the dental epithelium toward epidermal lineage. Conclusively, S100a6 knockdown in the dental epithelium suppresses cell proliferation via calcium and intracellular signaling and promotes differentiation of the dental epithelium toward the epidermal lineage.


Assuntos
Cálcio , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Ameloblastos/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Células Epiteliais , Odontogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo
2.
Radiographics ; 44(4): e230079, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547031

RESUMO

The pleura is a thin, smooth, soft-tissue structure that lines the pleural cavity and separates the lungs from the chest wall, consisting of the visceral and parietal pleurae and physiologic pleural fluid. There is a broad spectrum of normal variations and abnormalities in the pleura, including pneumothorax, pleural effusion, and pleural thickening. Pneumothorax is associated with pulmonary diseases and is caused by iatrogenic or traumatic factors. Chest radiography and US help detect pneumothorax with various signs, and CT can also help assess the causes. Pleural effusion occurs in a wide spectrum of diseases, such as heart failure, cirrhosis, asbestos-related diseases, infections, chylothorax, and malignancies. Chest US allows detection of a small pleural effusion and evaluation of echogenicity or septa in pleural effusion. Pleural thickening may manifest as unilateral or bilateral and as focal, multifocal, or diffuse. Various diseases can demonstrate pleural thickening, such as asbestos-related diseases, neoplasms, and systemic diseases. CT, MRI, and fluorodeoxyglucose (FDG) PET/CT can help differentiate between benign and malignant lesions. Knowledge of these features can aid radiologists in suggesting diagnoses and recommending further examinations with other imaging modalities. The authors provide a comprehensive review of the clinical and multimodality imaging findings of pleural diseases and their differential diagnoses. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Assuntos
Amianto , Doenças Pleurais , Derrame Pleural , Neoplasias Pleurais , Pneumotórax , Humanos , Diagnóstico Diferencial , Pneumotórax/complicações , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Doenças Pleurais/diagnóstico por imagem , Derrame Pleural/complicações , Neoplasias Pleurais/complicações
3.
FASEB J ; 37(4): e22861, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929047

RESUMO

Enamel is formed by the repetitive secretion of a tooth-specific extracellular matrix and its decomposition. Calcification of the enamel matrix via hydroxyapatite (HAP) maturation requires pH cycling to be tightly regulated through the neutralization of protons released during HAP synthesis. We found that Gpr115, which responds to changes in extracellular pH, plays an important role in enamel formation. Gpr115-deficient mice show partial enamel hypomineralization, suggesting that other pH-responsive molecules may be involved. In this study, we focused on the role of Gpr111/Adgrf2, a duplicate gene of Gpr115, in tooth development. Gpr111 was highly expressed in mature ameloblasts. Gpr111-KO mice showed enamel hypomineralization. Dysplasia of enamel rods and high carbon content seen in Gpr111-deficient mice suggested the presence of residual enamel matrices in enamel. Depletion of Gpr111 in dental epithelial cells induced the expression of ameloblast-specific protease, kallikrein-related peptidase 4 (Klk4), suggesting that Gpr111 may act as a suppressor of Klk4 expression. Moreover, reduction of extracellular pH to 6.8 suppressed the expression of Gpr111, while the converse increased Klk4 expression. Such induction of Klk4 was synergistically enhanced by Gpr111 knockdown, suggesting that proper enamel mineralization may be linked to the modulation of Klk4 expression by Gpr111. Furthermore, our in vitro suppression of Gpr111 and Gpr115 expression indicated that their suppressive effect on calcification was additive. These results suggest that both Gpr111 and Gpr115 respond to extracellular pH, contribute to the expression of proteolytic enzymes, and regulate the pH cycle, thereby playing important roles in enamel formation.


Assuntos
Hipomineralização do Esmalte Dentário , Receptores Acoplados a Proteínas G , Animais , Camundongos , Ameloblastos/metabolismo , Hipomineralização do Esmalte Dentário/genética , Hipomineralização do Esmalte Dentário/metabolismo , Células Epiteliais/metabolismo , Concentração de Íons de Hidrogênio , Calicreínas/metabolismo , Receptores Acoplados a Proteínas G/genética
4.
Tohoku J Exp Med ; 259(4): 307-318, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36653161

RESUMO

Adequate physical activity during pregnancy is crucial for maternal and fetal health. Although physical activity during pregnancy is restricted, social support and trust may have a favorable influence on physical activity. This study aimed to examine the association between cognitive social capital during pregnancy and prenatal physical activity among Japanese individuals. We also investigated whether social capital has an extended influence during pregnancy on physical activity 1.5 years after delivery. The cognitive social capital of 3,055 pregnant women in their second trimester was measured using nine questions on a self-administered questionnaire. Each cognitive social capital was classified into two or four groups based on their scores. Physical activity during pregnancy was measured using a validated questionnaire in the second trimester and at 1.5 years after delivery. Participants were classified as having adequate physical activity (≥ 150 min/week) or inadequate physical activity (< 150 min/week) based on the physical activity guidelines during pregnancy. After adjusting for confounders, emotional support was positively associated with the prevalence of adequate prenatal physical activity (P for trend = 0.002). Moreover, there was a positive association between emotional support during pregnancy and the prevalence of adequate physical activity 1.5 years after delivery. Among Japanese women, emotional support during pregnancy was associated with a higher prevalence of adequate prenatal physical activity during pregnancy and at 1.5 years after delivery.


Assuntos
Gestantes , Capital Social , Feminino , Humanos , Gravidez , População do Leste Asiático , Exercício Físico , Japão/epidemiologia , Gestantes/psicologia
5.
J Oral Biosci ; 64(4): 400-409, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270608

RESUMO

OBJECTIVES: Epithelial-mesenchymal interactions are extremely important in tooth development and essential for ameloblast differentiation, especially during tooth formation. We aimed to identify the type of mesenchymal cells important in ameloblast differentiation. METHODS: We used two types of cell culture systems with chambers and found that a subset of debtal mesenchimal cells is important for the differentiatiuon of dental spithelial cells into ameloblasts. Further, we induced dental pulp stem cell-like cells from dental pulp stem cells using the small molecule compound BIO ( a GSK-3 inhibitor IX) to clarify the mechanism involved in ameloblast differentiation induced by dental pulp stem cells. RESULTS: The BIO-induced dental pulp cells promoted the expression of mesenchymal stem cell markers Oct3/4 and Bcrp1. Furthermore, we used artificial dental pulp stem cells induced by BIO to identify the molecules expressed in dental pulp stem cells required for ameloblast differentiation. Panx3 expression was induced in the dental pulp stem cell through interaction with the dental epithelial cells. In addition, ATP release from cells increased in Panx3-expressing cells. We also confirmed that ATP stimulation is accepted in dental epithelial cells. CONCLUSIONS: These results showed that the Panx3 expressed in dental pulp stem cells is important for ameloblast differentiation and that ATP release by Panx3 may play a role in epithelial-mesenchymal interaction.


Assuntos
Ameloblastos , Células-Tronco Mesenquimais , Ameloblastos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Materials (Basel) ; 15(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897604

RESUMO

Recently, the development of dental materials has increased the availability of various hyperesthesia desensitizers. However, there are no studies on the duration of retreatment in terms of adherence rates. Thus, the adhesion rates of resin-based desensitizers were investigated. We used a conventional desensitizer and a recently developed desensitizer containing calcium salt of 4-methacryloxyethyl trimellitic acid (C-MET) and 10-methacryloyloxydecyl dihydrogen calcium phosphate (MDCP). These colored agents were applied to the surfaces of premolars and molars, and the area was measured from weekly oral photographs. Areas were statistically analyzed and mean values were calculated using 95% confidence intervals. A p-value of <0.05 was considered statistically significant. These rates were significantly higher on the buccal side of the maxilla and lower on the lingual side of the maxilla. In addition, the desensitizer containing C-MET and MDCP displayed significantly higher adhesion rates. It is suggested that this will require monthly follow-ups and reevaluation because both agents cause less than 10% adherence and there is almost no sealing effect after 4 weeks. In addition, the significantly higher adhesion rate of the desensitizer containing C-MET and MDCP indicated that the novel monomer contributed to the improvement in the adhesion ability.

8.
Sci Rep ; 12(1): 3093, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197531

RESUMO

Development of chemotherapy has led to a high survival rate of cancer patients; however, the severe side effects of anticancer drugs, including organ hypoplasia, persist. To assume the side effect of anticancer drugs, we established a new ex vivo screening model and described a method for suppressing side effects. Cyclophosphamide (CPA) is a commonly used anticancer drug and causes severe side effects in developing organs with intensive proliferation, including the teeth and hair. Using the organ culture model, we found that treatment with CPA disturbed the growth of tooth germs by inducing DNA damage, apoptosis and suppressing cellular proliferation and differentiation. Furthermore, low temperature suppressed CPA-mediated inhibition of organ development. Our ex vivo and in vitro analysis revealed that low temperature impeded Rb phosphorylation and caused cell cycle arrest at the G1 phase during CPA treatment. This can prevent the CPA-mediated cell damage of DNA replication caused by the cross-linking reaction of CPA. Our findings suggest that the side effects of anticancer drugs on organ development can be avoided by maintaining the internal environment under low temperature.


Assuntos
Antineoplásicos/efeitos adversos , Ciclofosfamida/efeitos adversos , Temperatura , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Humanos , Modelos Biológicos , Técnicas de Cultura de Órgãos
9.
J Cell Physiol ; 237(3): 1964-1979, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34957547

RESUMO

Cell- and tissue-specific extracellular matrix (ECM) composition plays an important role in organ development, including teeth, by regulating cell behaviors, such as cell proliferation and differentiation. Here, we demonstrate for the first time that von Willebrand factor D and epidermal growth factor (EGF) domains (Vwde), a previously uncharacterized ECM protein, is specifically expressed in teeth and regulates cell proliferation and differentiation in inner enamel epithelial cells (IEEs) and enamel formation. We identified the Vwde as a novel ECM protein through bioinformatics using the NCBI expressed sequence tag database for mice. Vwde complementary DNA encodes 1773 amino acids containing a signal peptide, a von Willebrand factor type D domain, and tandem calcium-binding EGF-like domains. Real-time polymerase chain reaction demonstrated that Vwde is highly expressed in tooth tissue but not in other tissues including the brain, lung, heart, liver, kidney, and bone. In situ hybridization revealed that the IEEs expressed Vwde messenger RNA in developing teeth. Immunostaining showed that VWDE was localized at the proximal and the distal ends of the pericellular regions of the IEEs. Vwde was induced during the differentiation of mouse dental epithelium-derived M3H1 cells. Vwde-transfected M3H1 cells secreted VWDE protein into the culture medium and inhibited cell proliferation, whereas ameloblastic differentiation was promoted. Furthermore, Vwde increased the phosphorylation of extracellular signal-regulated kinase 1/2 and protein kinase B and strongly induced the expression of the intercellular junction protein, N-cadherin (Ncad). Interestingly, the suppression of endogenous Vwde inhibited the expression of Ncad. Finally, we created Vwde-knockout mice using the CRISPR-Cas9 system. Vwde-null mice showed low mineral density, rough surface, and cracks in the enamel, indicating the enamel hypoplasia phenotype. Our findings suggest that Vwde assembling the matrix underneath the IEEs is essential for Ncad expression and enamel formation.


Assuntos
Ameloblastos , Diferenciação Celular , Esmalte Dentário , Proteínas da Matriz Extracelular , Ameloblastos/citologia , Animais , Caderinas/genética , Caderinas/metabolismo , Esmalte Dentário/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Camundongos Knockout
10.
J Cell Physiol ; 237(2): 1597-1606, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34812512

RESUMO

Tissue-specific basic helix-loop-helix (bHLH) transcription factors play an important role in cellular differentiation. We recently identified AmeloD as a tooth-specific bHLH transcription factor. However, the role of AmeloD in cellular differentiation has not been investigated. The aim of this study was to elucidate the role of AmeloD in dental epithelial cell differentiation. We found that AmeloD-knockout (AmeloD-KO) mice developed an abnormal structure and altered ion composition of enamel in molars, suggesting that AmeloD-KO mice developed enamel hypoplasia. In molars of AmeloD-KO mice, the transcription factor Sox21 encoding SRY-Box transcription factor 21 and ameloblast differentiation marker genes were significantly downregulated. Furthermore, overexpression of AmeloD in the dental epithelial cell line M3H1 upregulated Sox21 and ameloblast differentiation marker genes, indicating that AmeloD is critical for ameloblast differentiation. Our study demonstrated that AmeloD is an important transcription factor in amelogenesis for promoting ameloblast differentiation. This study provides new insights into the mechanisms of amelogenesis.


Assuntos
Ameloblastos , Dente , Fatores Genéricos de Transcrição/metabolismo , Ameloblastos/metabolismo , Amelogênese/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Camundongos , Camundongos Knockout , Fatores de Transcrição/metabolismo
11.
Children (Basel) ; 8(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34943385

RESUMO

BACKGROUND: Recently, tooth deformities have been frequently encountered by pediatric dentists. Severe enamel hypomineralization sometimes induces pain such as hyperesthesia, but composite resin restoration is difficult because it often detaches without any cavity preparation. Resin-based hypersensitivity inhibitors for tooth physically seal the dentinal tubules. It was reported that hypersensitivity inhibitor containing novel adhesive monomers forms apatite and induces remineralization in vitro. Therefore, these case series assessed the clinical effects of remineralization and the suppression of hypersensitivity by Bio Coat Ca (Sun Medical, Shiga, Japan). METHODS: After mechanical tooth cleaning was performed, the hypersensitivity inhibitors were applied and cured by light exposure. Changes in hypersensitivity were determined by visual analog scale (VAS). The improvement of hypomineralization was evaluated by the change in color tone based on the digital images of intraoral photographs. RESULTS: After repeated monthly treatments, these cases showed decreased hypersensitivity after the fourth application, while the opaque white and brownish color improved on the seventh application. CONCLUSION: This novel hypersensitivity inhibitor with calcium salt of 4-methacryloxyethyl trimellitic acid (C-MET) and 10-methacryloyloxydecyl dihydrogen calcium phosphate (MDCP) not only suppressed hypersensitivity but also improved cloudiness and brown spots in recently erupted permanent teeth in presented cases.

12.
Front Physiol ; 12: 748574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630166

RESUMO

Connexin 43 (Cx43) is an integral membrane protein that forms gap junction channels. These channels mediate intercellular transport and intracellular signaling to regulate organogenesis. The human disease oculodentodigital dysplasia (ODDD) is caused by mutations in Cx43 and is characterized by skeletal, ocular, and dental abnormalities including amelogenesis imperfecta. To clarify the role of Cx43 in amelogenesis, we examined the expression and function of Cx43 in tooth development. Single-cell RNA-seq analysis and immunostaining showed that Cx43 is highly expressed in pre-secretory ameloblasts, differentiated ameloblasts, and odontoblasts. Further, we investigated the pathogenic mechanisms of ODDD by analyzing Cx43-null mice. These mice developed abnormal teeth with multiple dental epithelium layers. The expression of enamel matrix proteins such as ameloblastin (Ambn), which is critical for enamel formation, was significantly reduced in Cx43-null mice. TGF-ß1 induces Ambn transcription in dental epithelial cells. The induction of Ambn expression by TGF-ß1 depends on the density of the cultured cells. Cell culture at low densities reduces cell-cell contact and reduces the effect of TGF-ß1 on Ambn induction. When cell density was high, Ambn expression by TGF-ß1 was enhanced. This induction was inhibited by the gap junction inhibitors, oleamide, and 18α-grycyrrhizic acid and was also inhibited in cells expressing Cx43 mutations (R76S and R202H). TGF-ß1-mediated phosphorylation and nuclear translocation of ERK1/2, but not Smad2/3, were suppressed by gap junction inhibitors. Cx43 gap junction activity is required for TGF-ß1-mediated Runx2 phosphorylation through ERK1/2, which forms complexes with Smad2/3. In addition to its gap junction activity, Cx43 may also function as a Ca2+ channel that regulates slow Ca2+ influx and ERK1/2 phosphorylation. TGF-ß1 transiently increases intracellular calcium levels, and the increase in intracellular calcium over a short period was not related to the expression level of Cx43. However, long-term intracellular calcium elevation was enhanced in cells overexpressing Cx43. Our results suggest that Cx43 regulates intercellular communication through gap junction activity by modulating TGF-ß1-mediated ERK signaling and enamel formation.

13.
BMC Psychiatry ; 21(1): 526, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696742

RESUMO

BACKGROUND: Esketamine nasal spray (Spravato) in conjunction with oral antidepressants (ADs) is approved in the European Union, United States, and other markets for treatment-resistant depression (TRD). Efficacy, safety, and tolerability of esketamine nasal spray in Japanese patients with TRD needs to be assessed. METHODS: This Phase 2b, randomized, double-blind (DB), placebo-controlled study was conducted in adult Japanese patients with TRD meeting the Diagnostic and Statistical Manual of Mental Disorders (fifth edition) criteria of major depressive disorder with nonresponse to ≥ 1 but < 5 different ADs in the current episode at screening. Patients were treated with a new oral AD for 6 weeks (prospective lead-in phase); nonresponders were randomized (2:1:1:1) to placebo or esketamine (28-, 56-, or 84-mg) nasal spray along with the continued use of AD for 4 weeks (DB induction phase). Responders (≥50% reduction from baseline in the Montgomery-Asberg Depression Rating Scale [MADRS] total score) from the DB induction phase continued into the 24-week posttreatment phase and patients who relapsed could participate in a 4-week open-label (OL) second induction (flexibly-dosed esketamine). The primary efficacy endpoint, change from baseline in the MADRS total score at Day 28 in the DB induction phase, was based on mixed-effects model using repeated measures pairwise comparisons using a Dunnett adjustment. RESULTS: Of the 202 patients randomized in the DB induction phase (esketamine [n = 122] or placebo [n = 80]), the MADRS total scores decreased from baseline to Day 28 of the DB induction phase (- 15.2, - 14.5, - 15.1, and - 15.3 for esketamine 28 mg, 56 mg, 84 mg, and placebo groups, respectively), indicating an improvement in depressive symptoms; however, the difference between the esketamine and placebo groups was not statistically significant. The most common treatment-emergent adverse events during the DB induction phase in the combined esketamine group (incidences ranging from 12.3 to 41.0%) were blood pressure increased, dissociation, dizziness, somnolence, nausea, hypoaesthesia, vertigo, and headache; the incidence of each of these events was > 2-fold higher than the corresponding incidence in the placebo group. CONCLUSIONS: Efficacy of esketamine plus oral AD in Japanese TRD patients was not established; further investigation is warranted. All esketamine doses were safe and tolerated. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02918318 . Registered: 28 September 2016.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Adulto , Antidepressivos/efeitos adversos , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Método Duplo-Cego , Humanos , Japão , Ketamina , Estudos Prospectivos , Resultado do Tratamento
14.
J Cell Physiol ; 236(11): 7533-7543, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33844290

RESUMO

The epithelial-mesenchymal interactions are essential for the initiation and regulation of the development of teeth. Following the initiation of tooth development, numerous growth factors are secreted by the dental epithelium and mesenchyme that play critical roles in cellular differentiation. During tooth morphogenesis, the dental epithelial stem cells differentiate into several cell types, including inner enamel epithelial cells, which then differentiate into enamel matrix-secreting ameloblasts. Recently, we reported that the novel basic-helix-loop-helix transcription factor, AmeloD, is actively engaged in the development of teeth as a regulator of dental epithelial cell motility. However, the gene regulation mechanism of AmeloD is still unknown. In this study, we aimed to uncover the mechanisms regulating AmeloD expression during tooth development. By screening growth factors that are important in the early stages of tooth formation, we found that TGF-ß1 induced AmeloD expression and ameloblast differentiation in the dental epithelial cell line, SF2. TGF-ß1 phosphorylated ERK1/2 and Smad2/3 to induce AmeloD expression, whereas treatment with the MEK inhibitor, U0126, inhibited AmeloD induction. Promoter analysis of AmeloD revealed that the proximal promoter of AmeloD showed high activity in dental epithelial cell lines, which was enhanced following TGF-ß1 stimulation. These results suggested that TGF-ß1 activates AmeloD transcription via ERK1/2 phosphorylation. Our findings provide new insights into the mechanisms that govern tooth development.


Assuntos
Ameloblastos/metabolismo , Germe de Dente/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Transcrição Gênica , Ameloblastos/efeitos dos fármacos , Animais , Diferenciação Celular , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , Morfogênese , Fosforilação , Ratos , Transdução de Sinais , Proteínas Smad Reguladas por Receptor/metabolismo , Germe de Dente/citologia , Germe de Dente/efeitos dos fármacos , Fatores Genéricos de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia
15.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668763

RESUMO

A subpopulation of mesenchymal stem cells, developmentally derived from multipotent neural crest cells that form multiple facial tissues, resides within the dental pulp of human teeth. These stem cells show high proliferative capacity in vitro and are multipotent, including adipogenic, myogenic, osteogenic, chondrogenic, and neurogenic potential. Teeth containing viable cells are harvested via minimally invasive procedures, based on various clinical diagnoses, but then usually discarded as medical waste, indicating the relatively low ethical considerations to reuse these cells for medical applications. Previous studies have demonstrated that stem cells derived from healthy subjects are an excellent source for cell-based medicine, tissue regeneration, and bioengineering. Furthermore, stem cells donated by patients affected by genetic disorders can serve as in vitro models of disease-specific genetic variants, indicating additional applications of these stem cells with high plasticity. This review discusses the benefits, limitations, and perspectives of patient-derived dental pulp stem cells as alternatives that may complement other excellent, yet incomplete stem cell models, such as induced pluripotent stem cells, together with our recent data.


Assuntos
Polpa Dentária/citologia , Doenças Genéticas Inatas/patologia , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Diferenciação Celular , Humanos
16.
Front Cell Dev Biol ; 8: 595593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195274

RESUMO

There is growing evidence showing that tight junctions play an important role in developing enamel. Claudins are one of the main components of tight junctions and may have pivotal functions in modulating various cellular events, such as regulating cell differentiation and proliferation. Mutations in CLDN10 of humans are associated with HELIX syndrome and cause enamel defects. However, current knowledge regarding the expression patterns of claudins and the function of Cldn10 during tooth development remains fragmented. In this study, we aimed to analyze the expression patterns of claudin family members during tooth development and to investigate the role of Cldn10 in amelogenesis. Using cap analysis gene expression of developing mouse tooth germs compared with that of the whole body, we found that Cldn1 and Cldn10 were highly expressed in the tooth. Furthermore, single-cell RNA-sequence analysis using 7-day postnatal Krt14-RFP mouse incisors revealed Cldn1 and Cldn10 exhibited distinct expression patterns. Cldn10 has two isoforms, Cldn10a and Cldn10b, but only Cldn10b was expressed in the tooth. Immunostaining of developing tooth germs revealed claudin-10 was highly expressed in the inner enamel epithelium and stratum intermedium. We also found that overexpression of Cldn10 in the dental epithelial cell line, SF2, induced alkaline phosphatase (Alpl) expression, a marker of maturated stratum intermedium. Our findings suggest that Cldn10 may be a novel stratum intermedium marker and might play a role in cytodifferentiation of stratum intermedium.

17.
J Biol Chem ; 295(45): 15328-15341, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32868297

RESUMO

Dental enamel, the hardest tissue in the human body, is derived from dental epithelial cell ameloblast-secreted enamel matrices. Enamel mineralization occurs in a strictly synchronized manner along with ameloblast maturation in association with ion transport and pH balance, and any disruption of these processes results in enamel hypomineralization. G protein-coupled receptors (GPCRs) function as transducers of external signals by activating associated G proteins and regulate cellular physiology. Tissue-specific GPCRs play important roles in organ development, although their activities in tooth development remain poorly understood. The present results show that the adhesion GPCR Gpr115 (Adgrf4) is highly and preferentially expressed in mature ameloblasts and plays a crucial role during enamel mineralization. To investigate the in vivo function of Gpr115, knockout (Gpr115-KO) mice were created and found to develop hypomineralized enamel, with a larger acidic area because of the dysregulation of ion composition. Transcriptomic analysis also revealed that deletion of Gpr115 disrupted pH homeostasis and ion transport processes in enamel formation. In addition, in vitro analyses using the dental epithelial cell line cervical loop-derived dental epithelial (CLDE) cell demonstrated that Gpr115 is indispensable for the expression of carbonic anhydrase 6 (Car6), which has a critical role in enamel mineralization. Furthermore, an acidic condition induced Car6 expression under the regulation of Gpr115 in CLDE cells. Thus, we concluded that Gpr115 plays an important role in enamel mineralization via regulation of Car6 expression in ameloblasts. The present findings indicate a novel function of Gpr115 in ectodermal organ development and clarify the molecular mechanism of enamel formation.


Assuntos
Ameloblastos/metabolismo , Esmalte Dentário/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Ratos , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética
18.
Front Cell Dev Biol ; 8: 841, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984333

RESUMO

Dental epithelial stem cells give rise to four types of dental epithelial cells: inner enamel epithelium (IEE), outer enamel epithelium (OEE), stratum intermedium (SI), and stellate reticulum (SR). IEE cells further differentiate into enamel-forming ameloblasts, which play distinct roles, and are essential for enamel formation. These are conventionally classified by their shape, although their transcriptome and biological roles are yet to be fully understood. Here, we aimed to use single-cell RNA sequencing to clarify the heterogeneity of dental epithelial cell types. Unbiased clustering of 6,260 single cells from incisors of postnatal day 7 mice classified them into two clusters of ameloblast, IEE/OEE, SI/SR, and two mesenchymal populations. Secretory-stage ameloblasts expressed Amel and Enam were divided into Dspp + and Ambn + ameloblasts. Pseudo-time analysis indicated Dspp + ameloblasts differentiate into Ambn + ameloblasts. Further, Dspp and Ambn could be stage-specific markers of ameloblasts. Gene ontology analysis of each cluster indicated potent roles of cell types: OEE in the regulation of tooth size and SR in the transport of nutrients. Subsequently, we identified novel dental epithelial cell marker genes, namely Pttg1, Atf3, Cldn10, and Krt15. The results not only provided a resource of transcriptome data in dental cells but also contributed to the molecular analyses of enamel formation.

19.
iScience ; 23(7): 101329, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32674056

RESUMO

The transcription factor Sox21 is expressed in the epithelium of developing teeth. The present study aimed to determine the role of Sox21 in tooth development. We found that disruption of Sox21 caused severe enamel hypoplasia, regional osteoporosis, and ectopic hair formation in the gingiva in Sox21 knockout incisors. Differentiation markers were lost in ameloblasts, which formed hair follicles expressing hair keratins. Molecular analysis and chromatin immunoprecipitation sequencing indicated that Sox21 regulated Anapc10, which recognizes substrates for ubiquitination-mediated degradation, and determined dental-epithelial versus hair follicle cell fate. Disruption of either Sox21 or Anapc10 induced Smad3 expression, accelerated TGF-ß1-induced promotion of epithelial-to-mesenchymal transition (EMT), and resulted in E-cadherin degradation via Skp2. We conclude that Sox21 disruption in the dental epithelium leads to the formation of a unique microenvironment promoting hair formation and that Sox21 controls dental epithelial differentiation and enamel formation by inhibiting EMT via Anapc10.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32368031

RESUMO

Background: Different characteristics of patients with chronic obstructive pulmonary disease (COPD) between Western and Japanese populations have been reported. Risk factors for COPD exacerbation have been reported in Western countries but have not been studied in Japan. Patients and Methods: We retrospectively examined risk factors for COPD exacerbation. A total of 156 Japanese patients were enrolled, and the records of 136 patients were analyzed. Results: In the exacerbation group (n=60), body mass index, forced vital capacity (FVC), forced expiratory volume in one second (FEV1), the FEV1/FVC ratio (FEV1/FVC), the percent predicted values of FEV1 (%FEV1), and serum total protein (TP) and albumin concentrations were lower, and age, mortality rate, frequency of common cold and pneumonia, COPD severity rankings, modified Medical Research Council (mMRC) dyspnea score, and proportions of patients with severe emphysema (>50% of low attenuation area) and receiving long-term oxygen therapy were higher than those in the nonexacerbation group (n=76). However, the proportion of patients with a greater number of eosinophils (≥200/µL and/or ≥2%) and the exhaled nitric oxide concentration did not differ between the two groups. In the univariate analysis, the risk factors for exacerbation were age; long-term oxygen therapy; low FVC, FEV1, FEV1/FVC and %FEV1; high COPD severity ranking and mMRC score; severe emphysema; hypoproteinemia (<6.5 g/dL); hypoalbuminemia (<3.5 g/dL); leukocytosis; lymphocytopenia; and anemia. In the multivariate analysis, the risk factors were hypoalbuminemia, hypoproteinemia and low FEV1. Additionally, in patients in the exacerbation-induced mortality subgroup, age, exacerbation frequency, mMRC score and the proportion of patients with lymphocytopenia were higher, and FVC, %FVC, FEV1, serum TP concentration and the lymphocyte number were lower than those in the exacerbation survival subgroup. Conclusion: Malnutrition, airflow limitation and severe emphysema were risks for exacerbation and mortality associated with infection in Japanese patients with COPD.


Assuntos
Enfisema , Desnutrição , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Volume Expiratório Forçado , Humanos , Japão/epidemiologia , Desnutrição/diagnóstico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/terapia , Enfisema Pulmonar/diagnóstico , Enfisema Pulmonar/epidemiologia , Estudos Retrospectivos , Índice de Gravidade de Doença , Capacidade Vital
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA