Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 113(7): 2666-75, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25673734

RESUMO

Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI.


Assuntos
Tornozelo/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Modelos Biológicos , Contração Muscular , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Adaptação Fisiológica , Animais , Simulação por Computador , Feminino , Marcha , Transtornos Neurológicos da Marcha/etiologia , Atrofia Muscular/etiologia , Atrofia Muscular/fisiopatologia , Ratos , Ratos Long-Evans , Traumatismos da Medula Espinal/complicações
2.
J Neuroeng Rehabil ; 10: 97, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23947694

RESUMO

BACKGROUND: Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury. METHODS: 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length. RESULTS: Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies. CONCLUSIONS: Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in the absence of muscle atrophy and may be quantified using permutation entropy. Joint-specific differences in kinematic complexity may be attributed to different sources of motor control. This work indicates the importance of the ankle for rehabilitation interventions following spinal cord injury.


Assuntos
Articulação do Tornozelo/fisiopatologia , Locomoção/fisiologia , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Articulação do Tornozelo/patologia , Atrofia , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Músculo Esquelético/patologia , Ratos , Ratos Long-Evans , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/reabilitação
3.
J Forensic Sci ; 58 Suppl 1: S60-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23067043

RESUMO

TASER International's extended range electronic projectile (XREP) is intended to be fired from a shotgun, impact a threat, and apply remote neuromuscular incapacitation. This study investigated the corresponding potential of blunt impact injury and penetration. Forty-three XREP rounds were deployed onto two male human cadaver torsos at impact velocities between 70.6 and 95.9 m/sec (232 and 315 ft/sec). In 42 of the 43 shots fired, the XREP did not penetrate the abdominal wall, resulting in superficial wounds only. On one shot, the XREP's nose section separated prematurely in flight, resulting in penetration. No bony fractures were observed with any of the shots. The viscous criterion (VC), blunt criterion (BC), and energy density (E/A) were calculated (all nonpenetrating tests, average ± 1 standard deviation: VC: 1.14 ± 0.94 m/sec, BC: 0.77 ± 0.15, E/A: 22.6 ± 4.15 J/cm(2)) and, despite the lack of injuries, were generally found to be greater than published tolerance values.


Assuntos
Lesões por Armas de Eletrochoque/patologia , Estimulação Elétrica/instrumentação , Traumatismos Abdominais/patologia , Cadáver , Patologia Legal , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Ferimentos Penetrantes/patologia
4.
J Appl Biomech ; 23(1): 20-41, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17585176

RESUMO

In order to create a flexible model of the foot for dynamic musculoskeletal models, anthropometric data combined with geometric information describing the intrinsic musculature are needed. In this study, the left feet of two male and two female cadavers were dissected to expose the intrinsic musculotendon pathways. Three-dimensional coordinates of bony landmarks, tendon origins, insertions, and via points were digitized to submillimeter accuracy. Muscle architectural parameters were also measured, including volume, weight, and pennation angle and sarcomere, fascicle, and free tendon lengths. Optimal muscle fascicle lengths, pen-nation angles at optimal length, physiological cross-sectional areas (PCSA), and tendon slack lengths were calculated from the directly measured values. Fascicle length and pennation angle varied greatly within each subject. Average fascicle lengths normalized by optimal fascicle length varied between 0.73 and 1.25, with 75% of the formalin-preserved muscles being found in a shortened state. The muscle volume and PCSA also had a large variability within subjects but less variation between subjects. The ratio of tendon slack length to optimal fascicle length was found to vary between 1.05 and 9.56. Using this data, a deformable model of the foot can now be created. It is envisioned that deformable feet will significantly improve stability and realism in models of gait, posture, and sporting activities.


Assuntos
Ossos do Pé/anatomia & histologia , Ossos do Pé/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Tendões/anatomia & histologia , Tendões/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cadáver , Feminino , Pé/anatomia & histologia , Pé/fisiologia , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA