Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Nat Commun ; 15(1): 953, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38296961

RESUMO

Autophagy is primarily activated by cellular stress, such as starvation or mitochondrial damage. However, stress-independent autophagy is activated by unclear mechanisms in several cell types, such as thymic epithelial cells (TECs). Here we report that the mitochondrial protein, C15ORF48, is a critical inducer of stress-independent autophagy. Mechanistically, C15ORF48 reduces the mitochondrial membrane potential and lowers intracellular ATP levels, thereby activating AMP-activated protein kinase and its downstream Unc-51-like kinase 1. Interestingly, C15ORF48-dependent induction of autophagy upregulates intracellular glutathione levels, promoting cell survival by reducing oxidative stress. Mice deficient in C15orf48 show a reduction in stress-independent autophagy in TECs, but not in typical starvation-induced autophagy in skeletal muscles. Moreover, C15orf48-/- mice develop autoimmunity, which is consistent with the fact that the stress-independent autophagy in TECs is crucial for the thymic self-tolerance. These results suggest that C15ORF48 induces stress-independent autophagy, thereby regulating oxidative stress and self-tolerance.


Assuntos
Autoimunidade , Proteínas Mitocondriais , Camundongos , Animais , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Autofagia , Células Epiteliais/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo
2.
Nat Biotechnol ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749269

RESUMO

Complex gene regulatory mechanisms underlie differentiation and reprogramming. Contemporary single-cell lineage-tracing (scLT) methods use expressed, heritable DNA barcodes to combine cell lineage readout with single-cell transcriptomics. However, reliance on transcriptional profiling limits adaptation to other single-cell assays. With CellTag-multi, we present an approach that enables direct capture of heritable random barcodes expressed as polyadenylated transcripts, in both single-cell RNA sequencing and single-cell Assay for Transposase Accessible Chromatin using sequencing assays, allowing for independent clonal tracking of transcriptional and epigenomic cell states. We validate CellTag-multi to characterize progenitor cell lineage priming during mouse hematopoiesis. Additionally, in direct reprogramming of fibroblasts to endoderm progenitors, we identify core regulatory programs underlying on-target and off-target fates. Furthermore, we reveal the transcription factor Zfp281 as a regulator of reprogramming outcome, biasing cells toward an off-target mesenchymal fate. Our results establish CellTag-multi as a lineage-tracing method compatible with multiple single-cell modalities and demonstrate its utility in revealing fate-specifying gene regulatory changes across diverse paradigms of differentiation and reprogramming.

3.
Exp Cell Res ; 432(1): 113783, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37726045

RESUMO

Cytokinesis is the final step of the cell division in which cellular components are separated into two daughter cells. This process is regulated through the phosphorylation of different classes of proteins by serine/threonine (Ser/Thr) kinases such as Aurora B and Polo-like kinase 1 (PLK1). Conversely, the role of phosphorylation at tyrosine residues during cytokinesis has not been studied in detail yet. In this study, we performed a phosphotyrosine proteomic analysis of cells undergoing monopolar cytokinesis synchronized by using the Eg5 inhibitor (+)-S-trityl-l-cysteine (STLC) and the CDK1 inhibitor RO-3306. Phosphotyrosine proteomics gave 362 tyrosine-phosphorylated peptides. Western blot analysis of proteins revealed tyrosine phosphorylation in mitogen-activated protein kinase 14 (MAPK14), vimentin, ephrin type-A receptor 2 (EphA2), and myelin protein zero-like protein 1 (MPZL1) during monopolar cytokinesis. Additionally, we demonstrated that EphA2, a protein with unknown function during cytokinesis, is involved in cytokinesis. EphA2 knockdown accelerated epithelial cell transforming 2 (Ect2) knockdown-induced multinucleation, suggesting that EphA2 plays a role in cytokinesis in a particular situation. The list also included many proteins previously reported to play roles during cytokinesis. These results evidence that the identified phosphopeptides facilitate the identification of novel tyrosine phosphorylation signaling involved in regulating cytokinesis.


Assuntos
Citocinese , Proteômica , Humanos , Citocinese/fisiologia , Fosfotirosina , Células HeLa , Fosforilação , Fosfoproteínas , Peptídeos e Proteínas de Sinalização Intracelular
4.
Biochem Biophys Res Commun ; 669: 30-37, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37262950

RESUMO

Vestigial-like family member 3 (VGLL3) is a cofactor for the TEA-domain transcription factor (TEAD) family. Although VGLL3 influences myogenic differentiation, its involvement in slow- and fast-twitch fiber specification remains unknown. In this study, we established a cell line stably overexpressing VGLL3 and analyzed effects of VGLL3 on the myogenic differentiation of murine myoblast C2C12 cells. We found that VGLL3 expression promotes slow-twitch muscle differentiation. Mechanistically, VGLL3 expression induced the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master transcriptional regulator of slow-twitch muscle development. We also found that VGLL3 proteins are degraded by the proteasome, which causes switching of TEAD cofactors from VGLL3 to Yes-associated protein (YAP) and transcriptional coactivator with a PDZ-binding motif (TAZ). These results suggest that the balance between the two kinds of TEAD cofactors VGLL3 and YAP/TAZ controls muscle fiber-type specification.


Assuntos
Fibras Musculares Esqueléticas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição , Animais , Camundongos , Diferenciação Celular , Regulação da Expressão Gênica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/metabolismo
5.
Cell Signal ; 109: 110764, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315749

RESUMO

c-Src tyrosine kinase plays roles in a wide range of signaling events and its increased activity is frequently observed in a variety of epithelial and non-epithelial cancers. v-Src, an oncogene first identified in the Rous sarcoma virus, is an oncogenic version of c-Src and has constitutively active tyrosine kinase activity. We previously showed that v-Src induces Aurora B delocalization, resulting in cytokinesis failure and binucleated cell formation. In the present study, we explored the mechanism underlying v-Src-induced Aurora B delocalization. Treatment with the Eg5 inhibitor (+)-S-trityl-L-cysteine (STLC) arrested cells in a prometaphase-like state with a monopolar spindle; upon further inhibition of cyclin-dependent kinase (CDK1) by RO-3306, cells underwent monopolar cytokinesis with bleb-like protrusions. Aurora B was localized to the protruding furrow region or the polarized plasma membrane 30 min after RO-3306 addition, whereas inducible v-Src expression caused Aurora B delocalization in cells undergoing monopolar cytokinesis. Delocalization was similarly observed in monopolar cytokinesis induced by inhibiting Mps1, instead of CDK1, in the STLC-arrested mitotic cells. Importantly, western blotting analysis and in vitro kinase assay revealed that v-Src decreased the levels of Aurora B autophosphorylation and its kinase activity. Furthermore, like v-Src, treatment with the Aurora B inhibitor ZM447439 also caused Aurora B delocalization at concentrations that partially inhibited Aurora B autophosphorylation. Given that phosphorylation of Aurora B by v-Src was not observed, these results suggest that v-Src causes Aurora B delocalization by indirectly suppressing Aurora B kinase activity.


Assuntos
Citocinese , Quinolinas , Humanos , Aurora Quinase B/metabolismo , Fosforilação , Oncogenes , Mitose , Células HeLa
6.
J Cell Biochem ; 123(6): 1064-1076, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35434822

RESUMO

Vestigial-like family member 3 (VGLL3) is a member of the VGLL family that serves as cofactors for TEA-domain transcription factors. Although VGLL3 is involved in the proliferation of cancer cells, the molecular mechanisms underlying VGLL3-mediated cell proliferation remain largely unknown. In this study, we found that stable expression of VGLL3 in human lung cancer A549 cells affects glutamine metabolism and increases their dependency on de novo nucleotide synthesis for proliferation. Mechanistically, VGLL3 was found to induce the expression of GART, which encodes a trifunctional enzyme that catalyzes de novo purine synthesis from glutamine. GART knockdown and the glycinamide ribonucleotide synthase, aminoimidazole ribonucleotide synthase, and glycinamide ribonucleotide formyltransferase trifunctional protein (GART) inhibitor lometrexol repressed the proliferation and survival of A549 cells stably expressing VGLL3. Mesenchymal breast cancer BT549 cells and MDA-MB-231 cells showed high expression of VGLL3, and VGLL3 knockdown was found to reduce GART expression. Lometrexol also repressed the proliferation of these breast cancer cells, whereas addition of inosine monophosphate, an important metabolite downstream of GART, rescued this repression. Taken together, these results suggest that VGLL3 induces GART expression and thereby confers de novo nucleotide-dependent cell proliferation in cancer cells.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Neoplasias/metabolismo , Fosforribosilglicinamido Formiltransferase/metabolismo , Linhagem Celular Tumoral , Glutamina , Humanos , Neoplasias/patologia , Nucleotídeos/biossíntese , Fatores de Transcrição
7.
J Cell Mol Med ; 26(9): 2686-2697, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366053

RESUMO

Vestigial-like family member 3 (VGLL3) is a cofactor for TEA domain transcription factors (TEADs). Although VGLL3 is known to be highly expressed and stimulate cell proliferation in mesenchymal cancer cells, its involvement in mesenchymal phenotypes is largely unknown. In this study, we found that VGLL3 promotes epithelial-to-mesenchymal transition (EMT)-like phenotypic changes. We found that A549 human lung cancer cells stably expressing VGLL3 exhibit spindle-like morphological changes, reduction in the epithelial marker E-cadherin and induction of the mesenchymal marker Snail. Notably, VGLL3-expressing cells exhibited enhanced motility. The DNA-binding protein high-mobility group AT-hook 2 (HMGA2) was found to be a target of the VGLL3-TEAD4 complex, and HMGA2 knockdown repressed EMT-like phenotypic changes in VGLL3-expressing cells. VGLL3-dependent phenotypic changes are involved in transforming growth factor-ß (TGF-ß)-induced EMT progression. VGLL3 or HMGA2 knockdown repressed the motility of the mesenchymal breast cancer MDA-MB-231 cells. Importantly, high levels of VGLL3 expression were shown to have a positive correlation with poor prognosis in various human cancers, such as breast, colon, ovarian, head and neck, pancreatic, renal, gastric and cervical cancers. These results suggest that VGLL3 promotes EMT-like cell motility by inducing HMGA2 expression and accelerates cancer progression.


Assuntos
Neoplasias , Transdução de Sinais , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Família , Neoplasias/genética , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
FASEB J ; 35(11): e21996, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34679187

RESUMO

Vestigial-like family member 3 (VGLL3), a member of the vestigial-like family, is a cofactor of the TEA-domain-containing transcription factor (TEAD). Although elevation in VGLL3 expression is associated with inflammatory diseases, such as inflammatory sarcomas and autoimmune diseases, the molecular mechanisms underlying VGLL3-mediated inflammation remain largely unknown. In this study, we analyzed the relationship between elevated VGLL3 expression and the levels of NF-κB, a transcription factor that plays a pivotal role in inflammation. NF-κB was found to be activated in a cell line stably expressing VGLL3. Mechanistically, VGLL3 was shown to promote the expression and secretion of the potent NF-κB-activating cytokine interleukin (IL)-1α, probably through its association with TEADs. As VGLL3 is a target of transforming growth factor ß (TGF-ß) signaling, we analyzed IL-1α induction upon TGF-ß stimulation. TGF-ß stimulation was observed to induce IL-1α secretion and NF-κB activation, and VGLL3 was associated with this phenomenon. The TGF-ß transcription factors Smad3 and Smad4 were shown to be necessary for inducing VGLL3 and IL-1α expression. Lastly, we found that VGLL3-dependent IL-1α secretion is involved in constitutive NF-κB activation in highly malignant breast cancer cells. Collectively, the findings suggested that VGLL3 expression and TGF-ß stimulation activate the inflammatory response by inducing IL-1α secretion.


Assuntos
Inflamação/metabolismo , Interleucina-1alfa/imunologia , NF-kappa B/imunologia , Fatores de Transcrição/imunologia , Fator de Crescimento Transformador beta/imunologia , Células A549 , Fibroblastos , Humanos , Células MCF-7
9.
Yakugaku Zasshi ; 141(7): 927-947, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34193653

RESUMO

Protein-tyrosine phosphorylation is one of the posttranslational modifications and plays critical roles in regulating a wide variety of cellular processes, such as cell proliferation, differentiation, adhesion, migration, survival, and apoptosis. Protein-tyrosine phosphorylation is reversibly regulated by protein-tyrosine kinases and protein-tyrosine phosphatases. Strong inhibition of protein-tyrosine phosphatase activities is required to undoubtedly detect tyrosine phosphorylation. Our extremely careful usage of Na3VO4, a potent protein-tyrosine phosphatase inhibitor, has revealed not only the different intracellular trafficking pathways of Src-family tyrosine kinase members but also novel tyrosine phosphorylation signals in the nucleus and on mitotic spindle fibers and lysosomes. Furthermore, despite that the first identified oncogene product v-Src is generally believed to induce transformation through continuous stimulation of proliferation signaling by its strong tyrosine kinase activity, v-Src-driven transformation was found to be caused not by continuous proliferation signaling but by v-Src tyrosine kinase activity-dependent stochastic genome alterations. Here, I summarize our findings regarding novel tyrosine phosphorylation signaling in a spatiotemporal sense and highlight the significance of the roles of tyrosine phosphorylation in transcriptional regulation inside the nucleus and chromosome dynamics.


Assuntos
Núcleo Celular/metabolismo , Lisossomos/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fuso Acromático/metabolismo , Tirosina/metabolismo , Animais , Núcleo Celular/genética , Humanos , Lisossomos/genética , Fosforilação/genética , Fuso Acromático/genética
10.
J Biol Chem ; 297(2): 100831, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174284

RESUMO

The ATR pathway is one of the major DNA damage checkpoints, and Rad17 is a DNA-binding protein that is phosphorylated upon DNA damage by ATR kinase. Rad17 recruits the 9-1-1 complex that mediates the checkpoint activation, and proteasomal degradation of Rad17 is important for recovery from the ATR pathway. Here, we identified several Rad17 mutants deficient in nuclear localization and resistant to proteasomal degradation. The nuclear localization signal was identified in the central basic domain of Rad17. Rad17 Δ230-270 and R240A/L243A mutants that were previously postulated to lack the destruction box, a sequence that is recognized by the ubiquitin ligase/anaphase-promoting complex that mediates degradation of Rad17, also showed cytoplasmic localization. Our data indicate that the nuclear translocation of Rad17 is functionally linked to the proteasomal degradation. The ATP-binding activity of Rad17, but not hydrolysis, is essential for the nuclear translocation, and the ATPase domain orchestrates the nuclear translocation, the proteasomal degradation, as well as the interaction with the 9-1-1 complex. The Rad17 mutant that lacked a nuclear localization signal was proficient in the interaction with the 9-1-1 complex, suggesting cytosolic association of Rad17 and the 9-1-1 complex. Finally, we identified two tandem canonical and noncanonical destruction boxes in the N-terminus of Rad17 as the bona fide destruction box, supporting the role of anaphase-promoting complex in the degradation of Rad17. We propose a model in which Rad17 is activated in the cytoplasm for translocation into the nucleus and continuously degraded in the nucleus even in the absence of exogenous DNA damage.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Dano ao DNA , Sinais de Localização Nuclear/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Chlorocebus aethiops , Humanos , Sinais de Localização Nuclear/química , Fosforilação , Proteólise
11.
Vaccine ; 39(30): 4203-4209, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34120763

RESUMO

BACKGROUND: In Japan, measles elimination was confirmed in March 2015. Nevertheless, some outbreaks with cases imported from abroad were reported even after certification. A large rubella outbreak has been occurring since 2017. This study examines measurement of the speed of attenuation of antibody titer for a measles virus comparison with rubella virus. METHOD: Student subjects born from April 2, 1996 through April 1, 2000 were selected at Ibaraki Prefectural University of Health Sciences for this study: 177 for measles and 114 for rubella. They had available dates of additional immunization and antibodies in the following period and were judged as requiring additional immunization. We used enzyme immunoassay for IgG antibody testing. We regressed post-antibody titers of measles or rubella on pre-antibody titers and functions of duration between inoculation to post-evaluation. Functions of duration were selected according to the adjusted coefficient of determination. RESULTS: For measles, only a linear term of duration or log of duration was found to be significant without the quadratic terms. For rubella, we selected a five-order linear model which indicated that titer after vaccination would converge to 19.2. DISCUSSION: Results demonstrate that measles antibody decreased monotonically. If the pre-antibody titer was 15, vaccination raised titer quickly to 26; then it attenuated by 0.014 per day. Antibody titer is expected to be less than 16, which is the protection level of titer, after 704 days. For rubella, however, when pre-vaccination titer was evaluated at its average, the lower limit was 19.2. Therefore, protection can be maintained for a long time. This difference might reflect some circumstances of outbreaks of the respective diseases. CONCLUSION: This report describes the speed of attenuation and the epidemiological situation. The speed of attenuation can be expected to rise. Therefore, additional vaccination every several years might be necessary to maintain a protection level if a disease is almost eliminated.


Assuntos
Sarampo , Caxumba , Rubéola (Sarampo Alemão) , Anticorpos Antivirais , Pessoal de Saúde , Humanos , Japão/epidemiologia , Sarampo/epidemiologia , Sarampo/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Rubéola (Sarampo Alemão)/epidemiologia , Rubéola (Sarampo Alemão)/prevenção & controle , Vírus da Rubéola , Estudantes , Universidades , Vacinação
12.
Sci Rep ; 11(1): 2616, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510346

RESUMO

Src-family tyrosine kinases (SFKs) play important roles in a number of signal transduction events during mitosis, such as spindle formation. A relationship has been reported between SFKs and the mitotic spindle; however, the underlying mechanisms remain unclear. We herein demonstrated that SFKs accumulated in the centrosome region at the onset of mitosis. Centrosomal Fyn increased in the G2 phase in a microtubule polymerization-dependent manner. A mass spectrometry analysis using mitotic spindle preparations was performed to identify tyrosine-phosphorylated substrates. Protein regulator of cytokinesis 1 (PRC1) and kinastrin/small kinetochore-associated protein (kinastrin/SKAP) were identified as SFK substrates. SFKs mainly phosphorylated PRC1 at Tyr-464 and kinastrin at Tyr-87. Although wild-type PRC1 is associated with microtubules, phosphomimetic PRC1 impaired the ability to bind microtubules. Phosphomimetic kinastrin at Tyr-87 also impaired binding with microtubules. Collectively, these results suggest that tyrosine phosphorylation of PRC1 and kinastrin plays a role in their delocalization from microtubules during mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/enzimologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Fuso Acromático/enzimologia , Ciclo Celular , Células HeLa , Humanos , Fosforilação
13.
J Cell Mol Med ; 25(3): 1677-1687, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33465289

RESUMO

v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs.


Assuntos
Antineoplásicos/farmacologia , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína Oncogênica pp60(v-src)/metabolismo , Biomarcadores , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Imunofenotipagem , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Mitose/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Moduladores de Tubulina/farmacologia , Quinase 1 Polo-Like
14.
Artigo em Japonês | MEDLINE | ID: mdl-32963138

RESUMO

The purpose of this study was to improve the contrast between the nerves and blood by reconsidering the imaging parameters of the sampling perfection with application-optimized contrasts using different flip angle evolutions (SPACE) method, and to compare it with conventional methods, including the constructive interference in steady state (CISS) and T2-weighted SPACE (T2-SPACE) methods. In the phantom study, the repetition time (TR), echo time (TE), flip angle (FA), and turbo factor (TF) of SPACE were varied using the restore pulse. The parameters for which the nerve-blood contrast (C1) and cerebrospinal fluid-nerve contrast (C2) were equal were selected. Though multiple conditions resulted in C1 and C2 equivalence, we determined/set the TR=500 ms, TE=21 ms,  FA=120°, and  TF=30, considering the acquisition time, specific absorption rate (SAR), and artifacts. This sequence was called "short TR and short TE SPACE with restore pulse (SSSR)". In the phantom and healthy volunteer studies, the contrast between the nerves and blood in the SSSR method was statistically superior in both the physical and visual assessments compared with conventional methods. In the healthy volunteer study, C1 improved from 0.08 for CISS and 0.18 for T2-SPACE to 0.43 for SSSR. This is because the nerve signals in conventional methods were low due to the heavy T2-weighted, while those in the SSSR method were high due to the short TE and effect of the restore pulse. In conclusion, the contrast between the nerves and blood was significantly higher in the SSSR method compared with conventional methods.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Artefatos , Humanos , Imagens de Fantasmas
15.
Cell Signal ; 75: 109774, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32916275

RESUMO

Src-family kinases (SFKs), such as c-Src, Lyn and Fyn, belong to non-receptor-type tyrosine kinases and play key roles in cell proliferation, adhesion, and migration. SFKs are anchored to the plasma membrane, Golgi membranes and lysosomal membranes through lipid modifications. Although the functions of SFKs being localized to the plasma membrane are intensively studied, those of SFKs being localized to organelle membranes are poorly understood. Here, we show that, among SFKs, c-Src in particular is involved in a decrease in the amount of LC3-II. c-Src and non-palmitoylated Lyn [Lyn(C3S) (cysteine-3 â†’ serine-3)], which are localized onto lysosomes, decrease the amount of LC3-II and treatment with SFK inhibitors increases the amount of LC3-II, suggesting the importance of SFKs' lysosomal localization for a change of autophagic flux in a kinase activity-dependent manner. Colocalization of LC3-II with the lysosome-associated membrane protein LAMP1 shows that lysosome-localized SFKs promote the fusion of autophagosomes with lysosomes. Lysosome-localized SFKs play a positive role in the maintenance of cell viability under starvation conditions, which is further supported by knockdown of c-Src. Therefore, our results suggest that autophagosome-lysosome fusion is promoted by lysosome-localized c-Src, leading to cell survival under starvation conditions.


Assuntos
Autofagossomos/metabolismo , Proteína Tirosina Quinase CSK/metabolismo , Lisossomos/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos
16.
Sci Rep ; 10(1): 7621, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376886

RESUMO

There are eight human Src-family tyrosine kinases (SFKs). SFK members c-Src, c-Yes, Fyn, and Lyn are expressed in various cancer cells. SFK kinase activity is negatively regulated by Csk tyrosine kinase. Reduced activity of Csk causes aberrant activation of SFKs, which can be degraded by a compensatory mechanism depending on Cbl-family ubiquitin ligases. We herein investigated whether all SFK members are similarly downregulated by Cbl-family ubiquitin ligases in cancer cells lacking Csk activity. We performed Western blotting of multiple cancer cells knocked down for Csk and found that the protein levels of the 56 kDa isoform of Lyn (LynA), 53 kDa isoform of Lyn (LynB), c-Src, and Fyn, but not of c-Yes, were reduced by Csk depletion. Induction of c-Cbl protein levels was also observed in Csk-depleted cells. The reduction of LynA accompanying the depletion of Csk was significantly reversed by the knockdown for Cbls, whereas such significant recovery of LynB, c-Src, and Fyn was not observed. These results suggested that LynA is selectively downregulated by Cbls in cancer cells lacking Csk activity.


Assuntos
Proteína Tirosina Quinase CSK/deficiência , Proteína Tirosina Quinase CSK/genética , Técnicas de Silenciamento de Genes , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Quinases da Família src/metabolismo , Células HCT116 , Células HeLa , Humanos
17.
J Biol Chem ; 295(26): 8798-8807, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32385107

RESUMO

Vestigial-like 3 (VGLL3) is a member of the VGLL family, whose members serve as cofactors for TEA domain-containing transcription factors (TEADs). TEADs promote tissue and tumor development together with the cofactors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Although VGLL3 is involved in tumor cell proliferation, its relationship with TEADs and YAP/TAZ remains largely unknown. To close this research gap, here we established tumor cells stably expressing VGLL3 and found that they exhibit enhanced proliferation. Notably, YAP and TAZ were inactivated in the VGLL3-expressing cells, coinciding with activation of the Hippo pathway, which suppresses YAP/TAZ activities. VGLL3 in combination with TEADs promoted expression of the Hippo pathway components large tumor suppressor kinase (LATS2) and angiomotin-like 2 (AMOTL2). VGLL3 was highly expressed in malignant breast tumor cells and osteosarcoma cells, and VGLL3 knockdown increased nuclear localization of YAP and TAZ. Knockdown of LATS2 or AMOTL2, as well as VGLL3 knockdown, repressed proliferation of breast tumor cells. Together, these results suggest that VGLL3 together with TEADs promotes cell proliferation by activating the Hippo pathway through LATS2 and AMOTL2, leading to YAP/TAZ inactivation.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Via de Sinalização Hippo , Humanos
18.
Biochem Biophys Res Commun ; 517(2): 310-316, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31353086

RESUMO

The ATR-dependent DNA damage checkpoint is one of the major checkpoint pathways. The interaction between the Rad17-RFC2-5 and 9-1-1 complexes is central to the ATR-Chk1 pathway. However, little is known about the regulation of the interaction. We recently showed that vertebrate Rad17 proteins share a conserved C-terminal tail and that the C-terminal tails have a conserved amino acid motif named iVERGE that must be intact for the interaction between Rad17 and the 9‒1‒1 complex. In human Rad17, the Y665 and S667 residues are conserved in iVERGE. The Rad17-S667 residue is phosphorylated by CK2, and the phosphorylation is important for the interaction with the 9‒1‒1 complex. Here, we show that a C-terminal threonine residue of Rad17, T670 in human Rad17, is constitutively phosphorylated in vivo. The T670 phosphorylation is important for the S667 phosphorylation, and vice versa. Phosphomimetic mutations in the T670 residue promote the interaction with the 9-1-1 complex. The T670 and Y665 residues show functional redundancy, and their roles are dependent on the S667 phosphorylation. Rad17-T670 is phosphorylated by casein kinase 1δ/ε. Our data suggest that iVERGE integrates multiple signaling pathways to regulate the ATR-Chk1 pathway.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase II/metabolismo , Caseína Quinase Idelta/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mapas de Interação de Proteínas , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células COS , Proteínas de Ciclo Celular/química , Chlorocebus aethiops , Dano ao DNA , Humanos , Fosforilação , Transdução de Sinais
19.
Mol Oncol ; 13(6): 1419-1432, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31033201

RESUMO

Pemetrexed (PEM) inhibits DNA and RNA synthesis and is currently one of the first-line agents for mesothelioma. PEM suppresses the activities of several enzymes involved in purine and pyrimidine synthesis, and elevated activity of these enzymes in tumors is often linked with resistance to PEM. The agent also stimulates AMP-activated protein kinase (AMPK) and consequently influences the mammalian target of rapamycin complex 1 (mTORC1) pathways. Nevertheless, it remains unclear whether PEM resistance is linked to the AMPK or mTORC1 pathways. Here, we established two independent PEM-resistant mesothelioma cell lines in which expression of the PEM-target enzymes was not elevated, and found that levels of phosphorylated AMPK and p70S6K and, to a lesser extent, levels of phosphorylated AKT and p53, were increased in these cells as compared with the respective parent cells. PEM stimulation also augmented phosphorylation of AMPK, p70S6K, AKT and p53 in most cases. An AMPK activator increased phosphorylation and PEM resistance in parental cells, and the inhibitor decreased the resistance of PEM-resistant cells. In contrast, inhibitors for p70S6K and AKT did not influence PEM resistance; furthermore, increased levels of endogenous p53 did not affect PEM sensitivity. These data collectively indicate that constitutive activation of AMPK is associated with PEM resistance, and that this is unconnected with elevated DNA and RNA synthesis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Mesotelioma/metabolismo , Pemetrexede/farmacologia , Western Blotting , Linhagem Celular Tumoral , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
20.
Biochem Biophys Res Commun ; 511(4): 765-771, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30833073

RESUMO

Protein-tyrosine kinases transmit signals by phosphorylating their substrates in diverse cellular events. The receptor-type tyrosine kinase ErbB4, a member of the epidermal growth factor receptor subfamily, is activated and proteolytically cleaved upon ligand stimulation, and the cleaved ErbB4 intracellular domain (4ICD) is released into the cytoplasm and the nucleus. We previously showed that generation of nuclear 4ICD by neuregulin-1 (NRG-1) stimulation enhances the levels of trimethylation of histone H3 at lysine 9 (H3K9me3). However, it remains unclear how nuclear 4ICD enhances H3K9me3 levels. Here we show that the histone H3K9 methyltransferase SUV39H1 associates with NRG-1/ErbB4-mediated H3K9me3. Knockdown of SUV39H1 blocked NRG-1-mediated enhancement of the levels of H3K9me3. Nuclear 4ICD was found to phosphorylate SUV39H1 primarily at Tyr-297, -303, and -308 that are conserved among humans, mice, and flies. Furthermore, knockdown-rescue experiments showed that the unphosphorylatable SUV39H1 mutant (3 YF) was incapable of enhancing the levels of H3K9me3 upon NRG-1 stimulation. These results suggest that nuclear ErbB4 enhances H3K9me3 levels through tyrosine phosphorylation of SUV39H1 in NRG-1/ErbB4 signal-mediated chromatin remodeling.


Assuntos
Histonas/metabolismo , Metiltransferases/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-4/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Humanos , Metilação , Fosforilação , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA