Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399242

RESUMO

RNA vaccines are applicable to the treatment of various infectious diseases via the inducement of robust immune responses against target antigens by expressing antigen proteins in the human body. The delivery of messenger RNA by lipid nanoparticles (LNPs) has become a versatile drug delivery system used in the administration of RNA vaccines. LNPs are widely considered to possess adjuvant activity that induces a strong immune response. However, the properties of LNPs that contribute to their adjuvant activity continue to require clarification. To characterize the relationships between the lipid composition, particle morphology, and adjuvant activity of LNPs, the nanostructures of LNPs and their antibody production were evaluated. To simply compare the adjuvant activity of LNPs, empty LNPs were subcutaneously injected with recombinant proteins. Consistent with previous research, the presence of ionizable lipids was one of the determinant factors. Adjuvant activity was induced when a tiny cholesterol assembly (cholesterol-induced phase, ChiP) was formed according to the amount of cholesterol present. Moreover, adjuvant activity was diminished when the content of cholesterol was excessive. Thus, it is plausible that an intermediate structure of cholesterol (not in a crystalline-like state) in an intra-particle space could be closely related to the immunogenicity of LNPs.

2.
ACS Nano ; 17(3): 2588-2601, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36719091

RESUMO

Based on the clinical success of an in vitro transcribed mRNA (IVT-mRNA) that is encapsulated in lipid nanoparticles (mRNA-LNPs), there is a growing demand by researchers to test whether their own biological findings might be applicable for use in mRNA-based therapeutics. However, the equipment and/or know-how required for manufacturing such nanoparticles is often inaccessible. To encourage more innovation in mRNA therapeutics, a simple method for preparing mRNA-LNPs is prerequisite. In this study, we report on a method for encapsulating IVT-mRNA into LNPs by rehydrating a Ready-to-Use empty freeze-dried LNP (LNPs(RtoU)) formulation with IVT-mRNA solution followed by heating. The resulting mRNA-LNPs(RtoU) had a similar intraparticle structure compared to the mRNA-LNPs prepared by conventional microfluidic mixing. In vivo genome editing, a promising application of these types of mRNA-LNPs, was accomplished using the LNPs(RtoU) containing co-encapsulated Cas9-mRNA and a small guide RNA.


Assuntos
Lipossomos , Nanopartículas , RNA Mensageiro/genética , RNA Mensageiro/química , Nanopartículas/química , Microfluídica , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA