Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(8): 246, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940874

RESUMO

Three novel bacterial strains, FE4T, FE10T, and LA51T, which are phylogenetically affiliated to the genera Pseudoalteromonas, Vibrio, or Marinobacter, respectively, isolated from fertilized eggs and juveniles of sea cucumber Apostichopus japonicus were characterized by a genome-based taxonomical approach including multilocus sequence analysis (MLSA) combined with classical phenotypic and chemotaxonomic characterizations. A molecular network reconstructed on the basis of nucleotide sequences of four phylogenetic maker protein genes revealed that the strains FE4T, FE10T, and LA51T were closely related to Pseudoalteromonas shioyasakiensis, Vibrio lentus, and Marinobacter similis, respectively. Average nucleotide identity (ANI) comparisons against phylogenetically related species to FE4T, FE10T, and LA51T demonstrated that each newly described strain could not be identified as any previously described species within each genus showing < 95% ANI: 91.3% of FE4T against P. shioyasakiensis JCM 18891 T, 92.6% of FE10T against "V. bathopelagicus" Sal10, and 92.6% of LA51T against M. similis A3d10T, in maximum, respectively. Here, we show molecular phylogenetic, genomic, phenotypic, and chemotaxonomic features of the newly described species FE4T, FE10T, and LA51T. We also propose Pseudoalteromonas apostichopi sp. nov. with FE4T (JCM 36173 T = LMG 33143 T) as the type strain, Vibrio apostichopi sp. nov. with FE10T (JCM 36174 T = LMG 33144 T) as the type strain, and Marinobacter apostichopi sp. nov. with LA51T (JCM 36175 T = LMG 33145 T) as the type strain.


Assuntos
Marinobacter , Filogenia , Pseudoalteromonas , Stichopus , Vibrio , Pseudoalteromonas/genética , Pseudoalteromonas/isolamento & purificação , Pseudoalteromonas/classificação , Animais , Vibrio/genética , Vibrio/classificação , Vibrio/isolamento & purificação , Stichopus/microbiologia , Marinobacter/genética , Marinobacter/classificação , Marinobacter/isolamento & purificação , Larva/microbiologia , Tipagem de Sequências Multilocus , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , RNA Ribossômico 16S/genética , Zigoto/microbiologia , Genoma Bacteriano , Ácidos Graxos/análise , Ácidos Graxos/química
2.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37921642

RESUMO

A novel mesophilic, hydrogen- and thiosulfate-oxidizing bacterium, strain ISO32T, was isolated from diffuse-flow hydrothermal fluids from the Crab Spa vent on the East Pacific Rise. Cells of ISO32T were rods, being motile by means of a single polar flagellum. The isolate grew at a temperature range between 30 and 55 °C (optimum, 43 °C), at a pH range between 5.3 and 7.6 (optimum, pH 5.8) and in the presence of 2.0-4.0 % NaCl (optimum, 2.5 %). The isolate was able to grow chemolithoautotrophically with molecular hydrogen, thiosulfate or elemental sulfur as the sole electron donor. Thiosulfate, elemental sulfur, nitrate and molecular oxygen were each used as a sole electron acceptor. Phylogenetic analysis of 16S rRNA gene sequences placed ISO32T in the genus Hydrogenimonas of the class Epsilonproteobacteria, with Hydrogenimonas thermophila EP1-55-1 %T as its closest relative (95.95 % similarity). On the basis of the phylogenetic, physiological and genomic characteristics, it is proposed that the organism represents a novel species within the genus Hydrogenimonas, Hydrogenimonas cancrithermarum sp. nov. The type strain is ISO32T (=JCM 39185T =KCTC 25252T). Furthermore, the genomic properties of members of the genus Hydrogenimonas are distinguished from those of members of other thermophilic genera in the orders Campylobacterales (Nitratiruptor and Nitrosophilus) and Nautiliales (Caminibacter, Nautilia and Lebetimonas), with larger genome sizes and lower 16S rRNA G+C content values. Comprehensive metabolic comparisons based on genomes revealed that genes responsible for the Pta-AckA pathway were observed exclusively in members of mesophilic genera in the order Campylobacterales and of the genus Hydrogenimonas. Our results indicate that the genus Hydrogenimonas contributes to elucidating the evolutionary history of Epsilonproteobacteria in terms of metabolism and transition from a thermophilic to a mesophilic lifestyle.


Assuntos
DNA Bacteriano , Epsilonproteobacteria , Tiossulfatos/metabolismo , Água do Mar/microbiologia , Filogenia , Hidrogênio/metabolismo , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Composição de Bases , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Campylobacterales/metabolismo , Oxirredução , Enxofre/metabolismo
3.
Int J Food Microbiol ; 372: 109680, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35512432

RESUMO

Shiga toxin-producing Escherichia coli and Salmonella enterica are important pathogens worldwide. Bacteriophages can be effectively used to reduce the incidence of foodborne pathogens. The host recognition systems of phages are highly specific, with the host range of a common phage being limited to the species or strain level. Here, we characterized a novel broad-host-range phage, EscoHU1, that infects several bacterial species, including E. coli and S. enterica, and evaluated its antimicrobial potential to inhibit E. coli O157:H7 and S. Typhimurium growth in food systems. The adsorption of EscoHU1 on E. coli was faster than that on S. Typhimurium; however, the one-step growth curves of EscoHU1 in both species were similar. Genomic analysis of EscoHU1 revealed that this phage has long direct terminal repeats at both ends of the genome, and phylogenetic analysis of the terminase large subunit confirmed that EscoHU1 belongs to the genus Epseptimavirus. Comparative analysis of structural proteins indicated a diversity of proteins related to the host range (receptor-binding proteins and L-shaped tail fibers). Challenge tests using beef and milk demonstrated the antimicrobial effects of EscoHU1 in inhibiting the growth of E. coli O157:H7 and S. Typhimurium in the food system. However, the antimicrobial effect of EscoHU1 on S. Typhimurium was lower than that on E. coli O157:H7. These results suggest that the novel broad-host-range phage EscoHU1 may serve as an effective antimicrobial agent to reduce food poisoning caused by E. coli O157:H7 and S. Typhimurium.


Assuntos
Bacteriófagos , Escherichia coli O157 , Salmonella enterica , Animais , Bacteriófagos/genética , Bovinos , Microbiologia de Alimentos , Inocuidade dos Alimentos , Genômica , Especificidade de Hospedeiro , Filogenia
4.
Biocontrol Sci ; 26(3): 147-155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34556617

RESUMO

In this study, spore heat resistance and growth ability at refrigeration temperatures of Bacillus spp. and Paenibacillus spp. were determined. The spore D90°C of 67.6% (23 of 34 strains) of Bacillus and 73.9% (17 of 23 strains) of Paenibacillus was less than 15 min. The growth abilities of both genera were equivalent at 10°C. However, 71.1% (32 of 45 strains) of Paenibacillus and only 6.3% (3 of 48 strains) of Bacillus cereus group could grow at 4°C. Eight B. cereus strains formed spores with higher heat resistance compared to the other Bacillus strains assessed; however, they did not grow at tempreratures below 10°C. Conversely, four Paenibacillus strains formed spores with heat resistance equivalent to that of the eight B. cereus strains and grew at 6°C or lower. In particular, Paenibacillus sp. JCM13343 formed the highest heat-resistant spores (D90°C = 136.1 min) and grew well at 4°C. These results indicate that Paenibacillus can grow in processed foods during refrigerated storage and has the potential to cause spoilage as well as Bacillus. Therefore, Paenibacillus should be considered as one of the targets for microbiological control in refrigerated processed foods.


Assuntos
Bacillus , Paenibacillus , Bacillus cereus , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Temperatura Alta , Refrigeração , Esporos Bacterianos , Temperatura
5.
Curr Microbiol ; 77(3): 460-467, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31897663

RESUMO

Histamine food poisoning is a major safety concern related to seafood consumption worldwide. Morganella psychrotolerans is a novel psychrotolerant histamine-producer. In this study, the histamine production behaviors of M. psychrotolerans and two other major histamine-producers, mesophilic Morganella morganii and psychrotrophic Photobacterium phosphoreum, were compared in seafood products, and histamine accumulation by M. psychrotolerans was characterized at various pH and temperature levels in culture broth. The growth of M. psychrotolerans and P. phosphoreum increased similarly at 4 °C in canned tuna, but M. psychrotolerans produced much higher levels of histamine than P. phosphoreum. Histamine accumulation by M. psychrotolerans was induced at lower environmental pH condition at 4 and 20 °C. The optimal temperature and pH for producing histamine by crude histidine decarboxylase of M. psychrotolerans were 30 °C and pH 7, respectively. The activity of the crude HDC extracted from M. psychrotolerans cells at 10 °C retained 45% of the activity at 30 °C. Histidine decarboxylase gene expression of M. psychrotolerans was induced by low pH conditions. These results suggest that M. psychrotolerans are also a very important histamine-producer leading to histamine poisoning associated with seafood below the refrigeration temperature.


Assuntos
Histamina/biossíntese , Morganella/metabolismo , Alimentos Marinhos/análise , Alimentos Marinhos/microbiologia , Temperatura , Atum/microbiologia , Animais , Qualidade de Produtos para o Consumidor , Meios de Cultura/química , Doenças Transmitidas por Alimentos/microbiologia , Histidina Descarboxilase/genética , Concentração de Íons de Hidrogênio , Morganella/genética , Morganella morganii/metabolismo , Photobacterium/metabolismo
6.
Int J Food Microbiol ; 317: 108457, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31816558

RESUMO

Histamine (scombroid) poisoning is a foodborne illness caused by ingestion of histamine-contaminated seafood; therefore, inhibition of the growth of histamine-producing bacteria is key for it prevention. Infection of pathogenic bacteria by bacteriophages (phages) is being developed to prevent multiple foodborne illnesses. Here, we describe the inhibitory effect of a phage mixture on growth and histamine accumulation of Morganella morganii subsp. morganii, the primary causative agent of histamine poisoning in fish meat. We isolated novel two phages, ΦMV-1 and ΦMV-4, which infected M. morganii subsp. morganii strains tested in this study. ΦMV-1 and ΦMV-4 belong to family Myoviridae. Pulsed-field gel electrophoresis revealed that these phages are jumbo bacteriophages with large genomes. The latent period, rise period and burst size of ΦMV-1 were 30 min, 60 min, and 224 PFU per infected cell, respectively, and those of ΦMV-4 were 60 min, 50 min, and 62 PFU per infected cell, respectively. A mixture of ΦMV-1 and ΦMV-4 effectively prevented regrowth of M. morganii subsp. morganii after phage treatment, suggesting that the phage mixture treatment is more effective for inhibition of growth and histamine accumulation by M. morganii subsp. morganii than single phage treatment. Treatment with phage mixture inhibited growth and histamine accumulation by M. morganii subsp. morganii in canned and fresh tuna. The phage mixture might be an effective way to prevent growth of the histamine producer and accumulation of histamine in seafood.


Assuntos
Antibiose/fisiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Histamina/metabolismo , Morganella morganii/crescimento & desenvolvimento , Myoviridae/metabolismo , Animais , Peixes/microbiologia , Alimentos Marinhos/microbiologia , Atum/microbiologia
7.
FEMS Microbiol Lett ; 359(2): 166-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25168469

RESUMO

Morganella morganii has been identified as a causative agent of opportunistic infections and histamine poisoning. Bacteriophage is a virus and has recently been considered an alternative agent to antibiotics for the control of bacteria that have developed antibiotic resistance. In this study, a novel M. morganii bacteriophage isolated from river water was characterized. The isolated phage, termed FSP1, was purified by polyethylene glycol precipitation followed by cesium chloride density-gradient centrifugation. FSP1 has infectivity against only M. morganii and was identified as a Myoviridae bacteriophage through morphological analysis with transmission electron microscopy. According to the one-step growth curve, the FSP1 latent period, eclipse period, and burst size were 30, 20 min, and 42 PFU infected cell(-1) , respectively. The genome size of FSP1 was estimated to be c. 45.6-49.4 kb by restriction endonuclease analyses. Moreover, challenge testing against M. morganii in vitro revealed that FSP1 had high lytic activity and that the viable cell count of M. morganii was reduced by 6.12 log CFU mL(-1) after inoculation with FSP1 at a multiplicity of infection (MOI) = 10. These results suggested that FSP1 could be used as a biocontrol agent against M. morganii for treatment of infectious disease treatment or food decontamination.


Assuntos
Morganella morganii/virologia , Myoviridae/isolamento & purificação , Rios/virologia , Bacteriólise , Genoma Viral , Myoviridae/classificação , Myoviridae/fisiologia , Myoviridae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA