Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Neurobiol ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180615

RESUMO

Microcephaly is characterized by an occipitofrontal circumference at least two standard deviations below the mean for age and sex. Neurodevelopmental disorders (NDD) are commonly associated with microcephaly, due to perturbations in brain development and functioning. Given the extensive genetic heterogeneity of microcephaly, managing patients is hindered by the broad spectrum of diagnostic possibilities that exist before conducting molecular testing. We investigated the genetic basis of syndromic microcephaly accompanied by NDD in a Brazilian cohort of 45 individuals and characterized associated clinical features, as well as evaluated the effectiveness of whole-exome sequencing (WES) as a diagnostic tool for this condition. Patients previously negative for pathogenic copy number variants underwent WES, which was performed using a trio approach for isolated index cases (n = 31), only the index in isolated cases with parental consanguinity (n = 8) or affected siblings in familial cases (n = 3). Pathogenic/likely pathogenic variants were identified in 19 families (18 genes) with a diagnostic yield of approximately 45%. Nearly 86% of the individuals had global developmental delay/intellectual disability and 51% presented with behavioral disturbances. Additional frequent clinical features included facial dysmorphisms (80%), brain malformations (67%), musculoskeletal (71%) or cardiovascular (47%) defects, and short stature (54%). Our findings unraveled the underlying genetic basis of microcephaly in half of the patients, demonstrating a high diagnostic yield of WES for microcephaly and reinforcing its genetic heterogeneity. We expanded the phenotypic spectrum associated with the condition and identified a potentially novel gene (CCDC17) for congenital microcephaly.

2.
Diagnostics (Basel) ; 13(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958189

RESUMO

Homologous recombination deficiency (HRD) has become an important prognostic and predictive biomarker for patients with high-grade serous ovarian cancer who may benefit from poly-ADP ribose polymerase inhibitors (PARPi) and platinum-based therapies. HRD testing provides relevant information to personalize patients' treatment options and has been progressively incorporated into diagnostic laboratories. Here, we assessed the performance of an in-house HRD testing system deployable in a diagnostic clinical setting, comparing results from two commercially available next-generation sequencing (NGS)-based tumor tests (SOPHiA DDMTM HRD Solution and AmoyDx® (HRD Focus Panel)) with the reference assay from Myriad MyChoice® (CDx). A total of 85 ovarian cancer samples were subject to HRD testing. An overall strong correlation was observed across the three assays evaluated, regardless of the different underlying methods employed to assess genomic instability, with the highest pairwise correlation between Myriad and SOPHiA (R = 0.87, p-value = 3.39 × 10-19). The comparison of the assigned HRD status to the reference Myriad's test revealed a positive predictive value (PPV) and negative predictive value (NPV) of 90.9% and 96.3% for SOPHiA's test, while AmoyDx's test achieved 75% PPV and 100% NPV. This is the largest HRD testing evaluation using different methodologies and provides a clear picture of the robustness of NGS-based tests currently offered in the market. Our data shows that the implementation of in-house HRD testing in diagnostic laboratories is technically feasible and can be reliably performed with commercial assays. Also, the turnaround time is compatible with clinical needs, making it an ideal alternative to offer to a broader number of patients while maintaining high-quality standards at more accessible price tiers.

3.
Braz J Psychiatry ; 45(3): 268-273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37015728

RESUMO

OBJECTIVES: To test the association of 45 single nucleotide polymorphisms (SNPs) with transition to psychiatric disorders in a cohort of individuals at ultrahigh risk (UHR) mental state for psychosis. METHODS: Through general population screening, 88 non-help-seeking UHR subjects and 130 healthy control individuals were genotyped for 45 SNPs related to psychosis. They were followed for a mean of 2.5 years, and conversion to psychotic and to general psychiatric disorders was assessed. Genotype frequencies between controls, converters, and non-converters were analyzed. RESULTS: There were no differences in sociodemographics between controls and UHR. Also, UHR converters and non-converters had no differences in their baseline symptoms scores. The dopamine receptor D2 gene (DRD2) SNP rs6277 was significantly more common among UHR who transitioned to psychosis (p < 0.001) and to UHR who transitioned to any psychiatric disorders (p = 0.001) when compared to UHR who did not transition. The rs6277 T allele was related to psychiatric morbidity in a dose-response fashion, being significantly more frequent in UHR converters than UHR non-converters and control subjects (p = 0.003). CONCLUSION: Our findings suggest that rs6277 could potentially constitute a genetic marker of transition to psychiatric disorders in subjects with at-risk mental states, warranting further investigation in larger samples.


Assuntos
Transtornos Mentais , Transtornos Psicóticos , Receptores de Dopamina D2 , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética , Polimorfismo de Nucleotídeo Único/genética , Escalas de Graduação Psiquiátrica , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/genética , Receptores Dopaminérgicos , Fatores de Risco , Receptores de Dopamina D2/genética
4.
J Med Genet ; 60(11): 1127-1132, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37055165

RESUMO

Rothmund-Thomson syndrome (RTS) is a rare, heterogeneous autosomal recessive genodermatosis, with poikiloderma as its hallmark. It is classified into two types: type I, with biallelic variants in ANAPC1 and juvenile cataracts, and type II, with biallelic variants in RECQL4, increased cancer risk and no cataracts. We report on six Brazilian probands and two siblings of Swiss/Portuguese ancestry presenting with severe short stature, widespread poikiloderma and congenital ocular anomalies. Genomic and functional analysis revealed compound heterozygosis for a deep intronic splicing variant in trans with loss of function variants in DNA2, with reduction of the protein levels and impaired DNA double-strand break repair. The intronic variant is shared by all patients, as well as the Portuguese father of the European siblings, indicating a probable founder effect. Biallelic variants in DNA2 were previously associated with microcephalic osteodysplastic primordial dwarfism. Although the individuals reported here present a similar growth pattern, the presence of poikiloderma and ocular anomalies is unique. Thus, we have broadened the phenotypical spectrum of DNA2 mutations, incorporating clinical characteristics of RTS. Although a clear genotype-phenotype correlation cannot be definitively established at this moment, we speculate that the residual activity of the splicing variant allele could be responsible for the distinct manifestations of DNA2-related syndromes.

5.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(3): 268-273, May-June 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447583

RESUMO

Objectives: To test the association of 45 single nucleotide polymorphisms (SNPs) with transition to psychiatric disorders in a cohort of individuals at ultrahigh risk (UHR) mental state for psychosis. Methods: Through general population screening, 88 non-help-seeking UHR subjects and 130 healthy control individuals were genotyped for 45 SNPs related to psychosis. They were followed for a mean of 2.5 years, and conversion to psychotic and to general psychiatric disorders was assessed. Genotype frequencies between controls, converters, and non-converters were analyzed. Results: There were no differences in sociodemographics between controls and UHR. Also, UHR converters and non-converters had no differences in their baseline symptoms scores. The dopamine receptor D2 gene (DRD2) SNP rs6277 was significantly more common among UHR who transitioned to psychosis (p < 0.001) and to UHR who transitioned to any psychiatric disorders (p = 0.001) when compared to UHR who did not transition. The rs6277 T allele was related to psychiatric morbidity in a dose-response fashion, being significantly more frequent in UHR converters than UHR non-converters and control subjects (p = 0.003). Conclusion: Our findings suggest that rs6277 could potentially constitute a genetic marker of transition to psychiatric disorders in subjects with at-risk mental states, warranting further investigation in larger samples.

6.
J Autism Dev Disord ; 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36502452

RESUMO

Microcephaly presents heterogeneous genetic etiology linked to several neurodevelopmental disorders (NDD). Copy number variants (CNVs) are a causal mechanism of microcephaly whose investigation is a crucial step for unraveling its molecular basis. Our purpose was to investigate the burden of rare CNVs in microcephalic individuals and to review genes and CNV syndromes associated with microcephaly. We performed chromosomal microarray analysis (CMA) in 185 Brazilian patients with microcephaly and evaluated microcephalic patients carrying < 200 kb CNVs documented in the DECIPHER database. Additionally, we reviewed known genes and CNV syndromes causally linked to microcephaly through the PubMed, OMIM, DECIPHER, and ClinGen databases. Rare clinically relevant CNVs were detected in 39 out of the 185 Brazilian patients investigated by CMA (21%). In 31 among the 60 DECIPHER patients carrying < 200 kb CNVs, at least one known microcephaly gene was observed. Overall, four gene sets implicated in microcephaly were disclosed: known microcephaly genes; genes with supporting evidence of association with microcephaly; known macrocephaly genes; and novel candidates, including OTUD7A, BBC3, CNTN6, and NAA15. In the review, we compiled 957 known microcephaly genes and 58 genomic CNV loci, comprising 13 duplications and 50 deletions, which have already been associated with clinical findings including microcephaly. We reviewed genes and CNV syndromes previously associated with microcephaly, reinforced the high CMA diagnostic yield for this condition, pinpointed novel candidate loci linked to microcephaly deserving further evaluation, and provided a useful resource for future research on the field of neurodevelopment.

7.
Clin Genet ; 100(5): 615-623, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34341987

RESUMO

Congenital limb deficiency (CLD), one of the most common congenital anomalies, is characterized by hypoplasia/aplasia of one or more limb bones and can be isolated or syndromic. The etiology in CLD is heterogeneous, including environmental and genetic factors. A fraction remains with no etiological factor identified. We report the study of 44 Brazilian individuals presenting isolated or syndromic CLD, mainly with longitudinal defects. Genetic investigation included particularly next-generation sequencing (NGS) and/or chromosomal microarray. The overall diagnostic yield was 45.7%, ranging from 60.9% in the syndromic to 16.7% in the non-syndromic group. In TAR syndrome, a common variant in 3´UTR of RBM8A, in trans with 1q21.1 microdeletion, was detected, corroborating the importance of this recently reported variant in individuals of African ancestry. NGS established a diagnosis in three individuals in syndromes recently reported or still under delineation (an acrofacial dysostosis, Coats plus and Verheij syndromes), suggesting a broader phenotypic spectrum in these disorders. Although a low rate of molecular detection in non-syndromic forms was observed, it is still possible that variants in non-coding regions and small CNVs, not detected by the techniques applied in this study, could play a role in the etiology of CLD.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Fenótipo , Brasil , Pré-Escolar , Consanguinidade , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Análise de Sequência de DNA , Síndrome
8.
Am J Med Genet A ; 185(12): 3916-3923, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34405946

RESUMO

Sotos syndrome is characterized by overgrowth starting before birth through childhood with intellectual disability and craniofacial anomalies. The majority of patients are large for gestational age with developmental delay or intellectual disability. The majority of cases are caused by pathogenic variants in NSD1. The most consistent physical features in this disorder are facial dysmorphisms including prominent forehead, downslanted palpebral fissures, prognathism with a pointed chin, and a long and narrow face. We present a follow-up to a cohort of 11 individuals found to harbor heterozygous, pathogenic, or likely pathogenic variants in NSD1. We analyzed the facial dysmorphisms and the condition using retrospective over 20 years. Among these patients, followed in our medical genetics outpatient clinic for variable periods of time, all had a phenotype compatible with the characteristic Sotos syndrome facial features, which evolved with time and became superimposed with natural aging modifications. We present here a long-term follow-up of facial features of Brazilian patients with molecularly confirmed Sotos syndrome. In this largest Brazilian cohort of molecularly confirmed patients with Sotos syndrome to date, we provide a careful description of the facial phenotype, which becomes less pronounced with aging and possibly more difficult to recognize in adults. These results may have broad clinical implications for diagnosis and add to the global clinical delineation of this condition.


Assuntos
Anormalidades Craniofaciais/genética , Predisposição Genética para Doença , Histona-Lisina N-Metiltransferase/genética , Síndrome de Sotos/genética , Adolescente , Brasil/epidemiologia , Criança , Pré-Escolar , Anormalidades Craniofaciais/diagnóstico por imagem , Anormalidades Craniofaciais/fisiopatologia , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Face/diagnóstico por imagem , Face/fisiopatologia , Feminino , Seguimentos , Transtornos do Crescimento/complicações , Transtornos do Crescimento/genética , Transtornos do Crescimento/fisiopatologia , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Fenótipo , Síndrome de Sotos/diagnóstico por imagem , Síndrome de Sotos/fisiopatologia
9.
Am J Med Genet A ; 185(10): 3099-3103, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080768

RESUMO

Noonan syndrome (NS) is a Mendelian phenotype, member of a group of disorders sharing neurocardiofaciocutaneous involvement, known as RASopathies, caused by germline variants in genes coding for components of the RAS/MAPK signaling pathway. Recently, a novel gene of the RAS family (MRAS) was reported to be associated with NS in five children, all of them presenting, among the cardinal features of NS, the same cardiac finding, hypertrophic cardiomyopathy (HCM). We report on a 2-month-old infant boy also presenting this cardiac anomaly that evolved to a fatal outcome after a surgical myectomy. In addition, a thick walled left ventricle apical aneurysm, rarely described in NS, was also disclosed. Next-generation sequencing revealed a missense, previously reported variant in MRAS (p.Thr68Ile). This report reinforces the high frequency of HCM among individuals harboring MRAS variants, contrasting to the 20% overall prevalence of this cardiac anomaly in NS. Thus, these preliminary data suggest that variants in MRAS per se are high risk factors for the development of an early, severe HCM, mostly of them with left ventricle outflow tract obstruction, with poor prognosis. Because of the severity of the cardiac involvement, other clinical findings could not be addressed in detail. Therefore, long-term follow-up of these individuals and further descriptions are required to fully understand the complete phenotypic spectrum of NS associated with MRAS germline variants, including if these individuals present an increased risk for cancer.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiopatias Congênitas/genética , Síndrome de Noonan/genética , Proteínas ras/genética , Adolescente , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/patologia , Criança , Pré-Escolar , Feminino , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/patologia , Heterozigoto , Humanos , Lactente , Sistema de Sinalização das MAP Quinases/genética , Masculino , Mutação/genética , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/patologia
10.
Neurol Genet ; 6(5): e513, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33062893

RESUMO

OBJECTIVE: To analyze the modulation of the phenotype in manifesting carriers of recessive X-linked myotubular myopathy (XLMTM), searching for possible genetic modifiers. METHODS: Twelve Brazilian families with XLMTM were molecularly and clinically evaluated. In 2 families, 4 of 6 and 2 of 5 manifesting female carriers were identified. These females were studied for X chromosome inactivation. In addition, whole-exome sequencing was performed, looking for possible modifier variants. We also determined the penetrance rate among carriers of the mutations responsible for the condition. RESULTS: Mutations in the MTM1 gene were identified in all index patients from the 12 families, being 4 of them novel. In the heterozygotes, X chromosome inactivation was random in 3 of 4 informative manifesting carriers. The disease penetrance rate was estimated to be 30%, compatible with incomplete penetrance. Exome comparative analyses identified variants within a segment of 4.2 Mb on chromosome 19, containing the killer cell immunoglobulin-like receptor cluster of genes that were present in all nonmanifesting carriers and absent in all manifesting carriers. We hypothesized that these killer cell immunoglobulin-like receptor variants may modulate the phenotype, acting as a protective factor in the nonmanifesting carriers. CONCLUSIONS: Affected XLMTM female carriers have been described with a surprisingly high frequency for a recessive X-linked disease, raising the question about the pattern of inheritance or the role of modifier factors acting on the disease phenotype. We demonstrated the possible existence of genetic mechanisms and variants accountable for the clinical manifestation in these women, which can become future targets for therapies.

11.
Autism Res ; 13(2): 199-206, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31696658

RESUMO

Large genomic databases of neurodevelopmental disorders (NDD) are helpful resources of genomic variations in complex and heterogeneous conditions, as Autism Spectrum Disorder (ASD). We evaluated the role of rare copy number variations (CNVs) and exonic de novo variants, in a molecularly unexplored Brazilian cohort of 30 ASD trios (n = 90), by performing a meta-analysis of our findings in more than 20,000 patients from NDD cohorts. We identified three pathogenic CNVs: two duplications on 1q21 and 17p13, and one deletion on 4q35. CNVs meta-analysis (n = 8,688 cases and n = 3,591 controls) confirmed 1q21 relevance by identifying duplications in other 16 ASD patients. Exome analysis led the identification of seven de novo variants in ASD genes (SFARI list): three loss-of-function pathogenic variants in CUL3, CACNA1H, and SHANK3; one missense pathogenic variant in KCNB1; and three deleterious missense variants in ATP10A, ANKS1B, and DOCK1. From the remaining 12 de novo variants in non-previous ASD genes, we prioritized PRPF8 and RBM14. Meta-analysis (n = 13,754 probands; n = 2,299 controls) identified six and two additional patients with validated de novo variants in PRPF8 and RBM14, respectively. By comparing the de novo variants with a previously established mutational rate model, PRPF8 showed nominal significance before multiple test correction (P = 0.039, P-value adjusted = 0.079, binomial test), suggesting its relevance to ASD. Approximately 60% of our patients presented comorbidities, and the diagnostic yield was estimated in 23% (7/30: three pathogenic CNVs and four pathogenic de novo variants). Our uncharacterized Brazilian cohort with tetra-hybrid ethnic composition was a valuable resource to validate and identify possible novel candidate loci. Autism Res 2020, 13: 199-206. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: We believed that to study an unexplored autistic population, such as the Brazilian, could help to find novel genes for autism. In order to test this idea, with our limited budget, we compared candidate genes obtained from genomic analyses of 30 children and their parents, with those of more than 20,000 individuals from international studies. Happily, we identified a genetic cause in 23% of our patients and suggest a possible novel candidate gene for autism (PRPF8).


Assuntos
Transtorno do Espectro Autista/genética , Adolescente , Adulto , Brasil , Criança , Pré-Escolar , Deleção Cromossômica , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Exoma/genética , Éxons/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Adulto Jovem
12.
Am J Hum Genet ; 104(5): 925-935, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982609

RESUMO

Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.


Assuntos
Encéfalo/anormalidades , Leucoencefalopatias/etiologia , Mutação , Osteocondrodisplasias/etiologia , Osteosclerose/etiologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Adolescente , Adulto , Alelos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Feminino , Humanos , Leucoencefalopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Osteocondrodisplasias/patologia , Osteosclerose/patologia , Fenótipo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/fisiologia , Adulto Jovem
13.
Rev Bras Ginecol Obstet ; 40(9): 570-576, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30231296

RESUMO

Atelosteogenesis type I (AOI) is an autosomal dominant skeletal dysplasia caused by mutations in the filaminB (FLNB) gene with classic and well-recognizable clinical findings. However, parents affected with a mild phenotype, probably with somatic mosaicism, can generate offspring with a much more severe phenotype of AOI. In the present report, we describe a female newborn with classic AOI leading to early neonatal death, whose diagnostic was based on prenatal radiological findings and on the physical examination of the father. Since her father had limb deformities and corporal asymmetry, suggesting somatic mosaicism, his biological samples were analyzed through a gene panel for skeletal dysplasias. A missense mutation not previously described in the literature was detected in the FLNB gene, affecting ∼ 20% of the evaluated cells and, therefore, confirming the diagnosis of mosaic AOI in the father. The molecular analysis of the father was crucial to suggest the diagnosis of AOI in the newborn, since she died early and there were no biological samples available.


A atelosteogênese tipo I (AOI) é uma displasia esquelética autossômica dominante causada por mutações no gene filamina B (FLNB) com achados clínicos clássicos e bem reconhecíveis. No entanto, pais afetados com um fenótipo mais leve, provavelmente com mosaicismo somático, podem gerar uma prole com um fenótipo muito mais grave de AOI. No presente relato, descrevemos um recém-nascido do sexo feminino com AOI clássica, que levou à morte neonatal precoce, e cujo diagnóstico foi baseado em achados radiológicos pré-natais e no exame físico de seu genitor. Como o genitor apresentava deformidades em membros e assimetria corporal, que sugeriam mosaicismo somático, suas amostras biológicas foram analisadas por meio de um painel de genes para displasias esqueléticas. Uma mutação missense, não descrita anteriormente na literatura, foi detectada no gene FLNB, afetando ∼ 20% das células avaliadas, e, portanto, confirmando o diagnóstico de AOI em mosaico no genitor. A análise molecular realizada no genitor foi fundamental para sugerir o diagnóstico de AOI na recém-nascida, uma vez que esta morreu precocemente, e não havia amostras biológicas disponíveis.


Assuntos
Mosaicismo , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Herança Paterna/genética , Fenótipo , Ultrassonografia Pré-Natal , Adolescente , Feminino , Humanos , Masculino , Gravidez
14.
Clinics (Sao Paulo) ; 73: e324, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29972438

RESUMO

OBJECTIVES: To characterize the natural history of 39 achondroplastic patients diagnosed by clinical, radiological and molecular assessments. METHODS: Observational and retrospective study of 39 patients who were attended at a public tertiary level hospital between 1995 and 2016. RESULTS: Diagnosis was made prenatally in 11 patients, at birth in 9 patients and within the first year of life in 13 patients. The most prevalent clinical findings were short stature, high forehead, trident hands, genu varum and macrocephaly. The most prevalent radiographic findings were rhizomelic shortening of the long bones and narrowing of the interpediculate distance of the caudal spine. There was motor developmental delay in 18 patients and speech delay in 16 patients. The most common clinical intercurrences were middle ear dysfunction, sleep apnea, limb pain and obesity from 2 to 9 years of age. One patient was large for the gestational age but did not develop obesity. One patient developed hydrocephalus at 10 years old. The current age of the patients varies from 15 months to 36 years. The molecular study performed by Sanger sequencing of the common heterozygous mutation 1138G>A in FGFR3 was positive in all patients. Four cases were inherited, and 35 were sporadic (paternal age from 19 to 66 years). CONCLUSIONS: The diagnoses were made early based on clinical and radiographic findings. All cases were confirmed molecularly. Despite presenting a benign course, it is necessary to establish a systematic protocol for the surveillance of these patients due to the common clinical intercurrences.


Assuntos
Acondroplasia/diagnóstico , Acondroplasia/patologia , Acondroplasia/genética , Adulto , Fatores Etários , Idoso , Feminino , Seguimentos , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Mutação , Radiografia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Estudos Retrospectivos , Adulto Jovem
15.
Sci Rep ; 8(1): 11138, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042445

RESUMO

Several lines of indirect evidence, such as mutations or dysregulated expression of genes related to cytoskeleton, have suggested that cytoskeletal dynamics, a process essential for axons and dendrites development, is compromised in autism spectrum disorders (ASD). However, no study has yet examined whether cytoskeleton dynamics is functionally altered in cells from ASD patients. Here we investigated the regulation of actin cytoskeleton dynamics in stem cells from human exfoliated deciduous teeth (SHEDs) of 13 ASD patients and 8 control individuals by inducing actin filament depolymerization and then measuing their reconstruction upon activation of the RhoGTPases Rac, Cdc42 or RhoA. We observed that stem cells from seven ASD individuals (53%) presented altered dymanics of filament reconstruction, including a patient recently studied by our group whose iPSC-derived neuronal cells show shorten and less arborized neurites. We also report potentially pathogenic genetic variants that might be related to the alterations in actin repolymerization dynamics observed in some patient-derived cells. Our results suggest that, at least for a subgroup of ASD patients, the dynamics of actin polymerization is impaired, which might be ultimately leading to neuronal abnormalities.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Transtorno do Espectro Autista/genética , Neurônios/química , Citoesqueleto de Actina/genética , Actinas/genética , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Regulação da Expressão Gênica/genética , Humanos , Células-Tronco Pluripotentes Induzidas/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Esfoliação de Dente , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética
16.
BMC Med Genet ; 19(1): 73, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739340

RESUMO

BACKGROUND: Mutations in the SLC26A4 gene are associated with Pendred syndrome and autosomal recessive non-syndromic deafness (DFNB4). Both disorders have similar audiologic characteristics: bilateral hearing loss, often severe or profound, which may be associated with abnormalities of the inner ear, such as dilatation of the vestibular aqueduct or Mondini dysplasia. But, in Pendred syndrome (OMIM #274600), with autosomal recessive inheritance, besides congenital sensorineural deafness, goiter or thyroid dysfunctions are frequently present. The aim of this study was to determine whether mutations in SLC26A4 are a frequent cause of hereditary deafness in Brazilian patients. METHODS: Microsatellite haplotypes linked to SLC26A4 were investigated in 68 families presenting autosomal recessive non-syndromic deafness. In the probands of the 16 families presenting segregation consistent with linkage to SLC26A4, Sanger sequencing of the 20 coding exons was performed. In an additional sample of 15 individuals with suspected Pendred syndrome, because of the presence of hypothyroidism or cochleovestibular malformations, the SLC26A4 gene coding region was also sequenced. RESULTS: In two of the 16 families with indication of linkage to SLC26A4, the probands were found to be compound heterozygotes for probably pathogenic different mutations: three novel (c.1003 T > G (p. F335 V), c.1553G > A (p.W518X), c.2235 + 2 T > C (IVS19 + 2 T > C), and one already described, c.84C > A (p.S28R). Two of the 15 individuals with suspected Pendred syndrome because of hypothyreoidism or cochleovestibular malformations were monoallelic for likely pathogenic mutations: a splice mutation (IVS7 + 2 T > C) and the previously described c.1246A > C (p.T416P). Pathogenic copy number variations were excluded in the monoallelic cases and in those with normal results after Sanger sequencing. Additional mutations in the SLC26A4 gene or other definite molecular cause for deafness were not identified in the monoallelic patients, after exome sequencing. CONCLUSIONS: Biallelic pathogenic mutations in SLC26A4 explained ~ 3% of cases selected because of autosomal recessive deafness. Monoallelic mutations were present in ~ 13% of isolated cases of deafness with cochleovestibular malformations or suspected Pendred syndrome. These data reinforce the importance of mutation screening of SLC26A4 in Brazilian subjects and highlight the elevated frequency of monoallelic patients.


Assuntos
Bócio Nodular/genética , Perda Auditiva Neurossensorial/genética , Mutação , Análise de Sequência de DNA/métodos , Transportadores de Sulfato/genética , Brasil , Análise Mutacional de DNA , Feminino , Haplótipos , Humanos , Masculino , Repetições de Microssatélites , Linhagem
17.
Nat Commun ; 9(1): 1114, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535311

RESUMO

The original PDF version of this Article contained errors in the spelling of Luiz Carlos Caires-Júnior, Uirá Souto Melo, Bruno Henrique Silva Araujo, Alessandra Soares-Schanoski, Murilo Sena Amaral, Kayque Alves Telles-Silva, Vanessa van der Linden, Helio van der Linden, João Ricardo Mendes de Oliveira, Nivia Maria Rodrigues Arrais, Joanna Goes Castro Meira, Ana Jovina Barreto Bispo, Esper Abrão Cavalheiro, and Robert Andreata-Santos, which were incorrectly given as Luiz Carlos de Caires Jr., UiráSouto Melo, Bruno Silva Henrique Araujo, Alessandra Soares Schanoski, MuriloSena Amaral, Kayque Telles Alves Silva, Vanessa Van der Linden, Helio Van der Linden, João Mendes Ricardo de Oliveira, Nivia Rodrigues Maria Arrais, Joanna Castro Goes Meira, Ana JovinaBarreto Bispo, EsperAbrão Cavalheiro, and Robert Andreata Santos. Furthermore, in both the PDF and HTML versions of the Article, the top panel of Fig. 3e was incorrectly labeled '10608-1' and should have been '10608-4', and financial support from CAPES and DECIT-MS was inadvertently omitted from the Acknowledgements section. These errors have now been corrected in both the PDF and HTML versions of the Article.

18.
Nat Commun ; 9(1): 475, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396410

RESUMO

Congenital Zika syndrome (CZS) causes early brain development impairment by affecting neural progenitor cells (NPCs). Here, we analyze NPCs from three pairs of dizygotic twins discordant for CZS. We compare by RNA-Seq the NPCs derived from CZS-affected and CZS-unaffected twins. Prior to Zika virus (ZIKV) infection the NPCs from CZS babies show a significantly different gene expression signature of mTOR and Wnt pathway regulators, key to a neurodevelopmental program. Following ZIKV in vitro infection, cells from affected individuals have significantly higher ZIKV replication and reduced cell growth. Whole-exome analysis in 18 affected CZS babies as compared to 5 unaffected twins and 609 controls excludes a monogenic model to explain resistance or increased susceptibility to CZS development. Overall, our results indicate that CZS is not a stochastic event and depends on NPC intrinsic susceptibility, possibly related to oligogenic and/or epigenetic mechanisms.


Assuntos
Encéfalo/embriologia , Expressão Gênica , Células-Tronco Neurais/metabolismo , Gêmeos Dizigóticos , Infecção por Zika virus/congênito , Encéfalo/metabolismo , Encéfalo/virologia , Brasil , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas , Lactente , Recém-Nascido , Masculino , Células-Tronco Neurais/virologia , Análise de Sequência de RNA , Serina-Treonina Quinases TOR/genética , Via de Sinalização Wnt/genética , Infecção por Zika virus/genética , Infecção por Zika virus/virologia
19.
J Bone Miner Res ; 33(4): 753-760, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29178448

RESUMO

Osteogenesis imperfecta (OI) is a strikingly heterogeneous group of disorders with a broad range of phenotypic variations. It is also one of the differential diagnoses in bent bone dysplasias along with campomelic dysplasia and thanatophoric dysplasia and can usually be distinguished by decreased bone mineralization and bone fractures. Bent bone dysplasias also include syndromes such as kyphomelic dysplasia (MIM:211350) and mesomelic dysplasia Kozlowski-Reardon (MIM249710), both of which have been under debate regarding whether or not they are a real entity or simply a phenotypic manifestation of another dysplasia including OI. Bruck syndrome type 2 (BRKS2; MIM:609220) is a rare form of autosomal recessive OI caused by biallelic PLOD2 variants and is associated with congenital joint contractures with pterygia. In this report, we present six patients from four families with novel PLOD2 variants. All cases had multiple fractures. Other features ranged from prenatal lethal severe angulation of the long bones as in kyphomelic dysplasia and mesomelic dysplasia Kozlowski-Reardon through classical Bruck syndrome to moderate OI with normal joints. Two siblings with a kyphomelic dysplasia-like phenotype who were stillborn had compound heterozygous variants in PLOD2 (p.Asp585Val and p.Ser166*). One infant who succumbed at age 4 months had a bent bone phenotype phenotypically like skeletal dysplasia Kozlowski-Reardon (with mesomelic shortening, camptodactyly, retrognathia, cleft palate, skin dimples, but also with fractures). He was homozygous for the nonsense variant (p.Trp561*). Two siblings had various degrees of Bruck syndrome caused by the homozygous missense variant, p.His687Arg. Furthermore a boy with a clinical presentation of moderate OI had a possibly pathogenic homozygous variant p.Trp588Cys. Our experience of six patients with biallelic pathogenic variants in PLOD2 expands the phenotypic spectrum in the PLOD2-related phenotypes. © 2017 American Society for Bone and Mineral Research.


Assuntos
Anormalidades Múltiplas , Artrogripose , Doenças do Desenvolvimento Ósseo , Mutação de Sentido Incorreto , Osteogênese Imperfeita , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Adulto , Substituição de Aminoácidos , Artrogripose/diagnóstico por imagem , Artrogripose/genética , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Doenças do Desenvolvimento Ósseo/genética , Feminino , Humanos , Recém-Nascido , Masculino , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética
20.
Nat. Commun. ; 9: 475, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14938

RESUMO

Congenital Zika syndrome (CZS) causes early brain development impairment by affecting neural progenitor cells (NPCs). Here, we analyze NPCs from three pairs of dizygotic twins discordant for CZS. We compare by RNA-Seq the NPCs derived from CZS-affected and CZS-unaffected twins. Prior to Zika virus (ZIKV) infection the NPCs from CZS babies show a significantly different gene expression signature of mTOR and Wnt pathway regulators, key to a neurodevelopmental program. Following ZIKV in vitro infection, cells from affected individuals have significantly higher ZIKV replication and reduced cell growth. Whole-exome analysis in 18 affected CZS babies as compared to 5 unaffected twins and 609 controls excludes a monogenic model to explain resistance or increased susceptibility to CZS development. Overall, our results indicate that CZS is not a stochastic event and depends on NPC intrinsic susceptibility, possibly related to oligogenic and/or epigenetic mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA