Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2976, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536494

RESUMO

Fibroblast growth factor 5 (FGF5) is a crucial regulator of hair growth and an oncogenic factor in several human cancers. To generate FGF5 inhibitors, we performed Systematic Evolution of Ligands by EXponential enrichment and obtained novel RNA aptamers that have high affinity to human FGF5. These aptamers inhibited FGF5-induced cell proliferation, but did not inhibit FGF2-induced cell proliferation. Surface plasmon resonance demonstrated that one of the aptamers, F5f1, binds to FGF5 tightly (Kd = 0.7 ± 0.2 nM), but did not fully to FGF1, FGF2, FGF4, FGF6, or FGFR1. Based on sequence and secondary structure similarities of the aptamers, we generated the truncated aptamer, F5f1_56, which has higher affinity (Kd = 0.118 ± 0.003 nM) than the original F5f1. Since the aptamers have high affinity and specificity to FGF5 and inhibit FGF5-induced cell proliferation, they may be candidates for therapeutic use with FGF5-related diseases or hair disorders.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Proliferação de Células/efeitos dos fármacos , Fator 5 de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/uso terapêutico , Proliferação de Células/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 5 de Crescimento de Fibroblastos/isolamento & purificação , Fator 5 de Crescimento de Fibroblastos/metabolismo , Doenças do Cabelo/tratamento farmacológico , Humanos , Camundongos , Células NIH 3T3 , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/isolamento & purificação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Técnica de Seleção de Aptâmeros , Ressonância de Plasmônio de Superfície
2.
Biochem Biophys Res Commun ; 519(4): 727-733, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31543346

RESUMO

The dermal papilla (DP) is a key mesenchymal compartment of hair follicles that orchestrates mesenchymal-epithelial interaction regulating hair growth cycles. In the present study, we demonstrate that a TALE-family transcription factor, Meis1, is selectively localized in the nucleus of the DP in the anagen phase of the hair cycle. By using an ex vivo organ culture of vibrissae follicles, conditional Meis1 loss causes retardation in hair growth, accompanied by defects in cell proliferation of hair matrix cells. This cell proliferation defect is partly rescued by the addition of culture supernatants derived from Meis1-sufficient but not -deficient DP cells. These findings indicate that nuclear Meis1 in DP activate genes involved in secretion of some unknown factors, which promote proliferation of hair matrix cells in the anagen phase of the hair cycle.


Assuntos
Proliferação de Células , Derme/metabolismo , Folículo Piloso/metabolismo , Cabelo/metabolismo , Proteína Meis1/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Derme/citologia , Regulação da Expressão Gênica , Cabelo/citologia , Cabelo/crescimento & desenvolvimento , Folículo Piloso/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína Meis1/genética , Técnicas de Cultura de Órgãos , Vibrissas/citologia , Vibrissas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-28280377

RESUMO

BACKGROUND: There are very few effective, scientifically validated treatments with known mechanisms of action for treatment of hair loss in both men and women. Fibroblast growth factor 5 (FGF5) is an important factor in the irreversible transition from anagen to catagen, and inhibition of FGF5 prolongs anagen phase and reduces hair loss. OBJECTIVE: We aimed to screen botanically derived molecules for FGF5 inhibitory activity in vitro and assess efficacy in a clinical setting. METHODS: We screened for FGF5 inhibitory efficacy via a novel 2-step in vitro pipeline consisting of an engineered FGF5 responsive cell line, followed by an activated dermal papillae (DP) cell method. Efficacy in a clinical setting was assessed in a randomized, single-blind, placebo-controlled trial against early- to mid-stage pattern hair loss in men and women. RESULTS: We observed FGF5 inhibitory activity for a number of compounds from the monoterpenoid family, many showing greater inhibitory efficacy than our previously reported crude plant extracts. Evaluation of a lead candidate in a clinical study over 112 days showed a significant improvement in anagen:telogen (AT) ratio (p = 0.002), reduced hair fall (p = 0.007) and improved visual grading (p = 0.004). Scientifically matched photography on a subgroup of randomly chosen participants highlighted significant improvement in hair density, with increases evident in all tested participants compared to baseline. CONCLUSION: Isolates from the monoterpenoid family displayed efficacy in FGF5 inhibition in vitro. A topical formulation containing a leading isolate significantly improved AT ratio, reduced hair fall and increased apparent hair density in the tested population of men and women.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA