Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 46(4): 630-635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005308

RESUMO

The improvement of type 2 diabetes mellitus induced by naturally occurring polyphenols, known as flavonoids, has received considerable attention. However, there is a dearth of information regarding the effect of the trihydroxyflavone apigenin on pancreatic ß-cell function. In the present study, the anti-diabetic effect of apigenin on pancreatic ß-cell insulin secretion, apoptosis, and the mechanism underlying its anti-diabetic effects, were investigated in the INS-ID ß-cell line. The results showed that apigenin concentration-dependently facilitated 11.1-mM glucose-induced insulin secretion, which peaked at 30 µM. Apigenin also concentration-dependently inhibited the expression of endoplasmic reticulum (ER) stress signaling proteins, CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) and cleaved caspase-3, which was elevated by thapsigargin in INS-1D cells, with peak suppression at 30 µM. This was strongly correlated with the results of flow cytometric analysis of annexin V/propidium iodide (PI) staining and DNA fragmentation analysis. Moreover, the increased expression of thioredoxin-interacting protein (TXNIP) induced by thapsigargin was remarkably reduced by apigenin in a concentration-dependent manner. These results suggest that apigenin is an attractive candidate with remarkable and potent anti-diabetic effects on ß-cells, which are mediated by facilitating glucose-stimulated insulin secretion and preventing ER stress-mediated ß-cell apoptosis, the latter of which may be possibly mediated by reduced expression of CHOP and TXNIP, thereby promoting ß-cell survival and function.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Apigenina/farmacologia , Tapsigargina/metabolismo , Tapsigargina/farmacologia , Apoptose , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Fator de Transcrição CHOP/metabolismo
2.
Front Nutr ; 10: 1336133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249612

RESUMO

Introduction: Nobiletin is a polymethoxyflavonoid abundant in citrus peels and has been reported to have various bioactive effects. We have previously reported that nobiletin inhibits endoplasmic reticulum stress-induced apoptosis in the pancreatic ß-cell line INS-1 and that continuous subcutaneous administration of nobiletin suppresses the progression of diabetes by protecting ß-cells in type 2 diabetic db/db mice. In the present study, we investigated effects of oral ingestion of Shiikuwasha extract rich in nobiletin on the pathogenesis of type 2 diabetes in db/db mice. Materials and methods: A Shiikuwasha extract was dissolved in MediDrop sucralose. Twenty-four mice were equally divided in three groups and fed with vehicle or low or high dose of Shiikuwasha extract for 4 weeks. Blood glucose levels, pancreatic ß-cell mass, serum insulin levels, pancreatic insulin content, and other biomarkers were measured and compared between the groups. Results: The group that freely ingested the Shiikuwasha extract containing higher concentration of nobiletin (Shiikuwasha H) showed lower blood glucose levels. At the end of the experiment, the Shiikuwasha H group exhibited improved glucose tolerance, lower serum glycoalbumin levels, and an increase in ß-cell area per pancreas compared with the control group. Body weight, food intake, and serum biomarkers related to liver function and lipid metabolism of the Shiikuwasha H group were not different from those of the control group, although water intake of the former was significantly decreased than that of the latter. Conclusion: Our results suggest that the oral ingestion of Shiikuwasha extract preserves pancreatic ß-cell mass in diabetic mice, which might be attributed to ameliorating the progression of diabetes.

3.
J Dermatol ; 48(4): 447-456, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33492757

RESUMO

The stratum corneum (SC) of the epidermis acts as a skin permeability barrier, and abnormalities in SC formation lead to several skin disorders. Lipids, especially the epidermis-specific ceramide classes ω-O-acylceramides (acylceramides) and protein-bound ceramides, are essential for skin barrier formation. Ceramide synthase 3 (CERS3) is involved in the synthesis of acylceramides and protein-bound ceramides, and CERS3 mutations cause autosomal recessive congenital ichthyosis. In the present study, we measured ceramide synthase activity and performed comprehensive SC ceramide profiling in an ichthyosis patient with compound heterozygous CERS3 mutations: nonsense mutation p.Arg75* and missense mutation p.Arg229His. The activity of p.Arg75* and p.Arg229His mutant CERS3 proteins was reduced to 4% and 56%, respectively, of the wild-type protein. In the patient's SC, acylceramide levels were greatly reduced, but the levels of protein-bound ceramides remained almost unchanged. Non-acylated ceramide levels were also affected in the patient; in particular, the levels of ceramides composed of sphingosine and non-hydroxy or α-hydroxy fatty acid were substantially higher than in healthy controls. These results suggest that a reduction in acylceramide levels alone leads to ichthyosis. Although protein-bound ceramides are synthesized from acylceramides, levels of acylceramides and protein-bound ceramides are not necessarily correlated.


Assuntos
Ictiose Lamelar , Ictiose , Ceramidas , Epiderme , Humanos , Ictiose Lamelar/genética , Mutação
4.
Biochim Biophys Acta Proteins Proteom ; 1865(8): 997-1003, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28473295

RESUMO

The reaction mechanism of multicopper oxidase (MCO) to reduce dioxygen to water has not been fully understood yet in spite of extensive studies including on the intermediate I (peroxide intermediate) and intermediate II (native intermediate with an O-centered structure at the trinuclear copper center (TNC)). We performed the Phe mutations at the four amino acids, Tyr69, Cys138, Trp139, and Tyr496 located in the outer-sphere of TNC in CueO at the aim of studying whether they play a role as the fourth electron donor to dioxygen or not. Spectral properties and enzymatic activities of CueO were sparingly affected or not affected by the mutations at these putative electron donors. Of the targeted four amino acids Trp139 is in a d-π interaction distance with one of T3Cus and drives stepwise formation and release of water molecules by making two T3Cus non-equivalent. However, contribution of a radical species derived from Trp139 has not been observed in the formation and decay processes of the reaction intermediates. The present study strongly suggests that the amino acids located in the outer-sphere of TNC are not utilized as electron donor in the reduction of dioxygen to water by the three-domain MCO, CueO, differing from cytochrome oxidase and SLAC, a two-domain MCO, in which reaction participation of an uncoordinated Tyr residue has been proposed. SUMMARY: We performed the Phe mutations at the four amino acids, Tyr69, Cys138, Trp139 and Tyr496 located in the outer-coordination sphere of the trinuclear copper center in a three-domain multicopper oxidase, CueO to ascertain whether they function as an electron donor or not in the four-electron reduction of dioxygen. Characterizations of the mutants and reactions did not suggest participation of the targeted amino acids, indicating that CueO follows a different reaction mechanism from that of a two-domain multicopper oxidase, SLAC, in which reaction participation of an uncoordinated Tyr has been suggested.


Assuntos
Aminoácidos/metabolismo , Cobre/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Substâncias Redutoras/metabolismo , Sítios de Ligação/fisiologia , Elétrons , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutação/genética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA