Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1387607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774057

RESUMO

Introduction: A knee-ankle-foot orthosis (KAFO) prevents knee buckling during walking and enables gait training for acute hemiplegic stroke patients with severe gait disturbances. Although the goal of gait training with a KAFO is to improve gait ability, that is, to acquire walking with an ankle-foot orthosis (AFO), it is not clear how gait training with a KAFO contributes to improving gait ability. Therefore, this study aimed to investigate the relationship between muscle activities during walking with a KAFO and the improvement of gait ability in hemiplegic stroke patients with severe gait disturbance. Methods: A prospective cohort study was conducted. Fifty acute hemiplegic stroke patients who could not walk with an AFO participated. Muscle activities of the paretic rectus femoris, biceps femoris, tibialis anterior, and soleus were assessed with surface electromyogram during walking with a KAFO. Electromyograms were assessed at the beginning of gait training and at the time the Ambulation Independence Measure score improved by 3 or higher, or discharge. Results: Even in patients with complete hemiplegia, paretic rectus femoris, biceps femoris, and soleus showed periodic muscle activity during walking with a KAFO. Twenty-three patients improved to an Ambulation Independence Measure score of 3 or higher and were able to walk with an AFO (good recovery group). At the beginning of gait training, paretic rectus femoris muscle activity during the first double-limb support phase was significantly higher in the good recovery group than in the poor recovery group. The rectus femoris muscle activity significantly increased from before to after acute rehabilitation, which consisted mainly of gait training with a KAFO. Discussion: For acute hemiplegic stroke patients with severe disturbance, the induction and enhancement of paretic quadriceps muscle activity during walking with a KAFO play an important role in acquiring walking with an AFO.

2.
ACS Appl Mater Interfaces ; 13(48): 56988-56999, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34806359

RESUMO

Vascular embolization provides an effective approach for the treatment of hemorrhage, aneurysms, and other vascular abnormalities. However, current embolic materials, such as metallic coils and liquid embolic agents, are limited by their inability to provide safe, consistent, and controlled embolization. Here, we report an injectable hydrogel that can remain at the injection site and subsequently undergo in situ covalent crosslinking, leading to the formation of a dual-crosslinking network (DCN) hydrogel for endovascular embolization. The DCN hydrogel is simple to prepare, easy to deploy via needles and catheters, and mechanically stable at the target injection site, thereby avoiding embolization of nontarget vessels. It possesses efficient hemostatic activity and good biocompatibility. The DCN hydrogel is also clearly visible under X-ray imaging, thereby allowing for targeted embolization. In vivo tests in a rabbit artery model demonstrates that the DCN hydrogel is effective in achieving immediate embolization of the target artery with long-term occlusion by inducing luminal fibrosis. Collectively, the DCN hydrogel provides a viable, biocompatible, and cost-effective alternative to existing embolic materials with clinical translation potential for endovascular embolization.


Assuntos
Artérias/efeitos dos fármacos , Materiais Biomiméticos/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Embolização Terapêutica , Fibrose/tratamento farmacológico , Hidrogéis/farmacologia , Animais , Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/química , Células Cultivadas , Reagentes de Ligações Cruzadas/administração & dosagem , Reagentes de Ligações Cruzadas/química , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/química , Teste de Materiais , Camundongos , Estrutura Molecular
3.
Proc Natl Acad Sci U S A ; 104(25): 10524-9, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17553963

RESUMO

Ecologists have long been intrigued by the factors that control the pattern of biodiversity, i.e., the distribution and abundance of species. Previous studies have demonstrated that coexisting species partition their resources and/or that the compositional similarity between communities is determined by environmental factors, lending support to the niche-assembly model. However, no attempt has been made to test whether the relative amount of resources that reflects relative niche space controls relative species abundance in communities. Here, we demonstrate that the relative abundance of butterfly species in island communities is significantly related to the relative biomasses of their host plants but not to the geographic distance between communities. In the studied communities, the biomass of particular host plant species positively affected the abundance of the butterfly species that used them, and consequently, influenced the relative abundance of the butterfly communities. This indicated that the niche space of butterflies (i.e., the amount of resources) strongly influences butterfly biodiversity patterns. We present this field evidence of the niche-apportionment model that propose that the relative amount of niche space explains the pattern of the relative abundance of the species in communities.


Assuntos
Biodiversidade , Borboletas/fisiologia , Ecossistema , Geografia , Desenvolvimento Vegetal , Animais , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA